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Current Objectives
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SAYED Systems Group (https://sayed-sys-lab.github.io)
• ML systems inc. Distributed and Federated Learning
• Performance evaluations and optimizations
• Distributed and Networked Architectures
• Cloud/Fog/Edge Computing

Next Generations Machine Learning Systems require QRS
• Build the next generation architecture, techniques and 

methods for enabling high-quality machine learning at scale  
• Democratize the access to efficient and reliable machine 

learning systems
• Responsible use of machine learning via security and 

privacy enhancing methods.
Sometimes these goals are at odds with each other

Scan for sample projects

NextGen
MLSys

Reliability

SecurityQuality

https://sayed-sys-lab.github.io/


Deep Learning and LLMs are getting BIG FAST!
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Source: Cadence, Linley Group

Growing model complexity & data size
Compute cost to train SOTAmodels: 2x every 3.4 months

Training/Deployment requires
1. Lots of data/user expertise/tuning (quality)
2. Lots of computation/communication (reliability)
3. Lots of privacy-enhancing methods (security)



Scaling ML Systems to Enhance Quality

• The ML training needs to scale to have high quality 
deep learning models (or LLMs)
• To crunch/train on larger datasets
• To tune the training hyper-parameters 
• To frequently fine-tune or update the model

• Many HW/SW/Virt/Comm layers to optimize
• Support for Distributed Training is a MUST

• Data/Model/Pipeline Parallelism
• Parameter-efficient training

• Pruning/Sparsification or Quantization à impacts quality
• Google achieved large-scale LLM training via INT8 Quant
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Large-Scale ML Systems require Reliability

• Large number of computation nodes (servers, edge/mobile devices)
• The devices are prone-to-failure at any time (dropouts)
• The devices are heterogenous in configs (stragglers)

• Nodes are connected via communication links
• The communication can be become noisy/unreliable
• Networks are volatile and gets congested

• How can we minimize their impact (reliability?)
• MLSys configs need to be auto-tuned

• Tuning should be system informed (not arbitrary) to guarantee job completion
• MLSys need to be adaptive to varying conditions
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*Tang, Hanlin, Chen Yu, Cédric Renggli, Simon Kassing, Ankit Singla, Dan Alistarh, Ji Liu and Ce Zhang. “Distributed Learning over Unreliable Networks.”, ICML (2018).

*ResNet20 – CIFAR10



WHAT WE HAVE BEEN DOING?
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New distributed methods evolved à Federated ML

• Internet of Things (IoT)
• Healthcare
• Finance
• Industry
• Smart-city/grid
• Telecommunications
• Self-driving vehicles
• ….

Gboard 
next-word prediction

Using FL, 
better next-
word prediction 
accuracy: 
+24% A. Hard, et al. Federated 

Learning for Mobile 
Keyboard Prediction. 

arXiv:1811.03604

Apple: Voice recognition
User Data is Distributed at Edge!

9Chen et. al., Federated Large Language Model: A Position Paper, arXiv:2307.08925



Federated Model Training
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Heterogeneity in FL impacts QRS!

• Heterogenous data distributions à non-
IID setting (quality)

• Diverse hardware and network 
capabilities à stragglers (reliability)

• Clients are not always available/fail à
fault-tolerance is hard (quality/reliability)   

• Clients are not always faithful à
combating adversaries (quality/security) 
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Data/Resource Efficiency (Quality)

• Data/Resource diversity vs efficiency tradeoff
• Diversity à improve clients’ inclusion (i.e., data)
• Efficiency à reduce compute/comm consumed

• REFL: Resource-efficient FL framework
• Intelligent selection to maximize diversity
• Novel stale aggregation to improve efficiency
• >2X quality improvement over SOTA methods

• Published in ACM EuroSys’23
• https://dl.acm.org/doi/abs/10.1145/3552326.3567485
• Evaluated by ACM AE https://github.com/ahmedcs/REFL

Time
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Auto-tuning FL (Reliability)
• Auto-Tuning in FL is difficult problem
• How to choose the right acceleration and 

configuration for thousands of devices?
• Dynamic environment -> infinite possible 

system conditions unknown by the server.
• FLOAT: Auto-tuning for FL Systems
• Reinforcement Learning with Human Feedback
• Up to 53% better reliability over SOTA methods 

• Published in ACM EuroSys’24
• https://dl.acm.org/doi/abs/10.1145/3627703.3650081
• Evaluated by ACM AE https://github.com/AFKD98/FLOAT
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WHAT IS NEXT?
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How about the Future?!
• The future for Deep Learning & LLMs is Federated

• FL can help leverage planet’s unutilized data and 
computational resources, for LLM training. 

• Federated LLM training can be done with affordable 
hardware configurations 

• *Federated LLM training offers competitive 
performance with centralized training. 

• Leveraging the Edge-to-Cloud Continuum
• Scalable MLSys via multi-tiered approach
• Support of system architectures and protocols

• Don’t forget about privacy and security
• Consider the capacity vs latency trade-offs

• Cloud is resourceful but has high latency
• Edge has low-latency but is limited in resources
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Most importantly, as a community we need to make our solutions Open-Source

*Lorenzo Sani et. al.. “The Future of Large Language Model Pre-training is Federated.”, Arxiv 2405.10853 (2024).

*Large Language Model Pre-training will be Federated in future



How can we enable this?

KUber: Knowledge Delivery System for ML at Scale
https://kuber.org.uk

NextGen MLSys should be

Efficient à Produce high Quality models in 
reasonable cost/time via knowledge exchange
Scalable à Reliably support large number of 
distributed & dynamic learners
Privacy à Security/privacy of user data

https://kuber.org.uk/


Thanks 

To follow-up, please reach me at ahmed.sayed@qmul.ac.uk

https://sayed-sys-lab.github.io
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