

Deep Learning and LLM Training: Quality & Reliability From the lenses of Distributed/Federated ML

Ahmed M. A. Sayed

School of Electronic Engineering and Computer Science
Queen Mary University of London, UK

ahmed.sayed@qmul.ac.uk

<https://eeecs.qmul.ac.uk/~ahmed>

Current Objectives

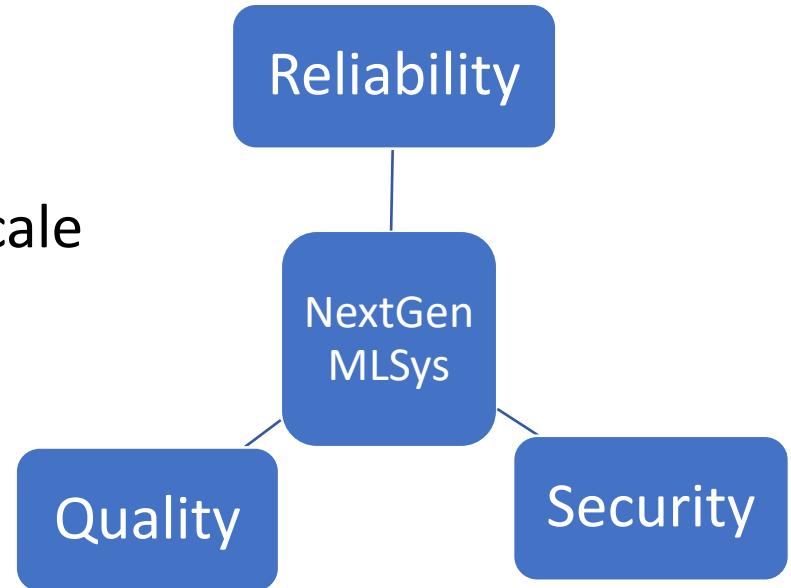
Next Generations Machine Learning Systems require QRS

- Build the next generation architecture, techniques and methods for enabling **high-quality** machine learning at scale
- Democratize the access to efficient and **reliable** machine learning systems
- Responsible use of machine learning via **security** and privacy enhancing methods.

Sometimes these goals are at odds with each other

SAYED Systems Group (<https://sayed-sys-lab.github.io>)

- ML systems inc. Distributed and Federated Learning
- Performance evaluations and optimizations
- Distributed and Networked Architectures
- Cloud/Fog/Edge Computing



Scan for sample projects

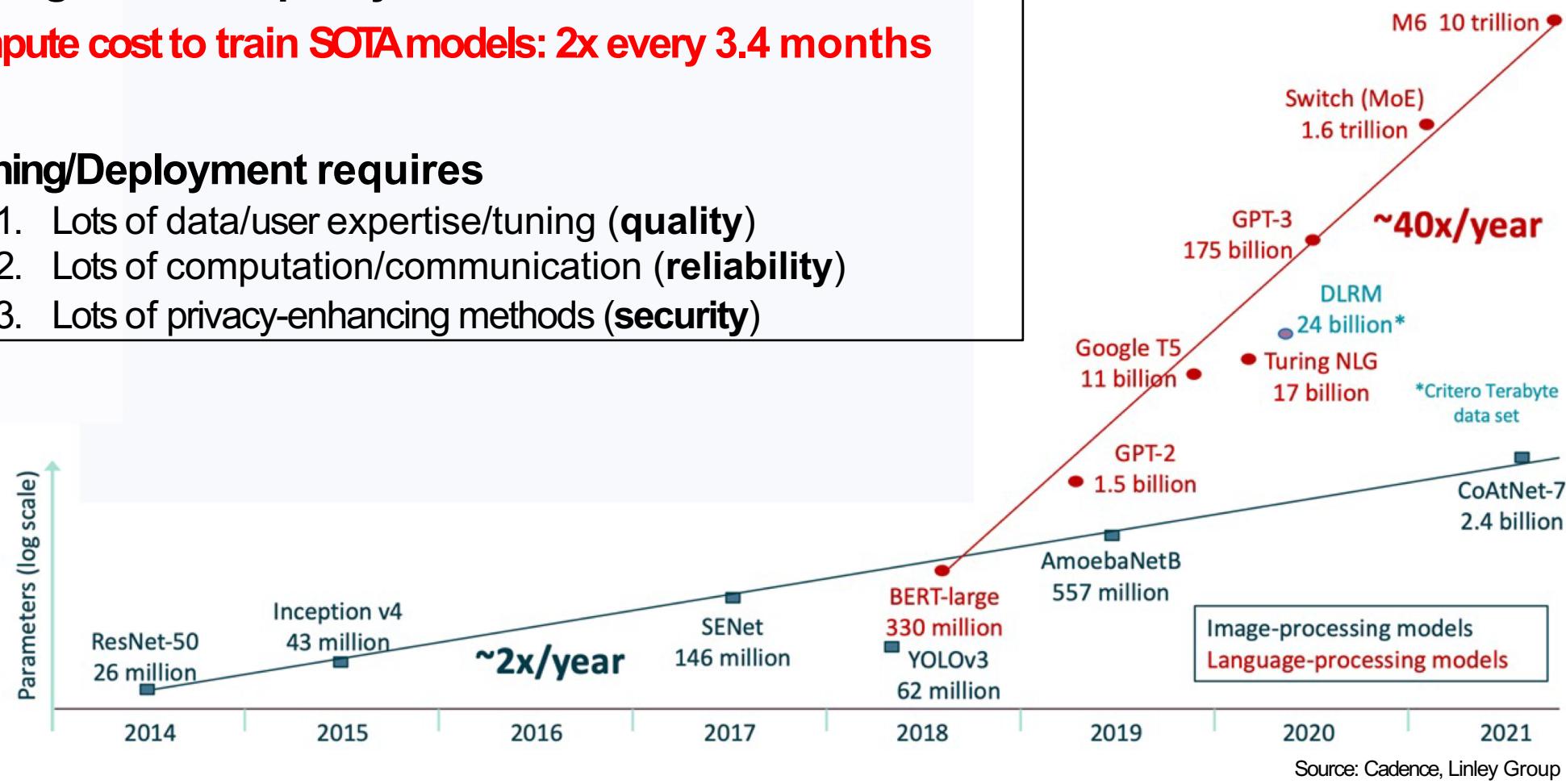
Deep Learning and LLMs are getting BIG FAST!

Growing model complexity & data size

Compute cost to train SOTA models: 2x every 3.4 months

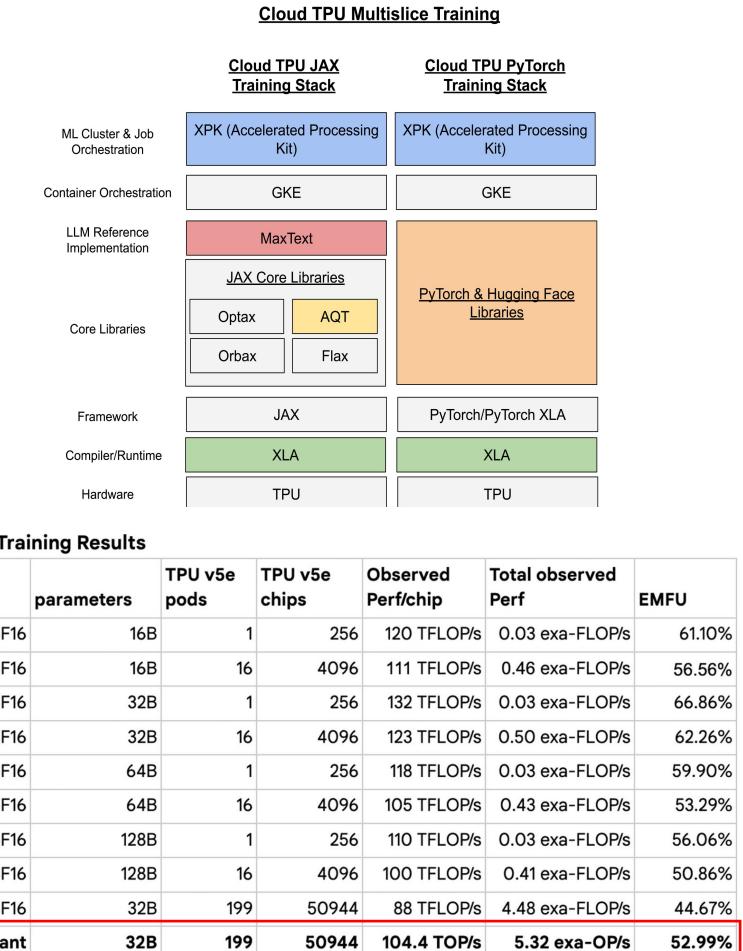
Training/Deployment requires

1. Lots of data/user expertise/tuning (**quality**)
2. Lots of computation/communication (**reliability**)
3. Lots of privacy-enhancing methods (**security**)



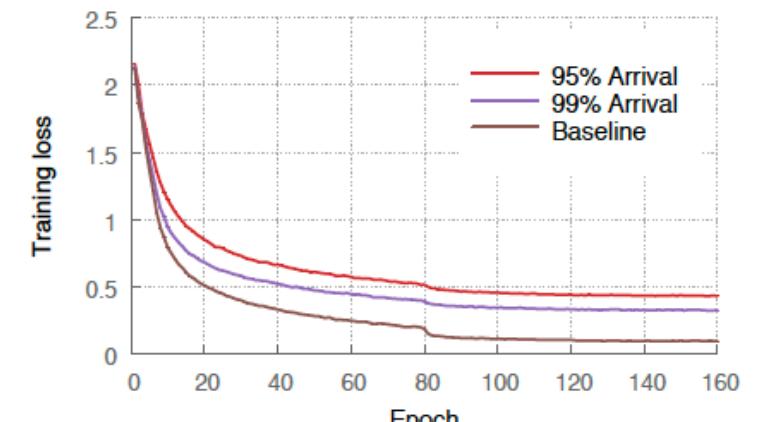
Scaling ML Systems to Enhance Quality

- The ML training needs to scale to have high quality deep learning models (or LLMs)
 - To crunch/train on larger datasets
 - To tune the training hyper-parameters
 - To frequently fine-tune or update the model
- Many HW/SW/Virt/Comm layers to optimize
 - Support for Distributed Training is a MUST
 - Data/Model/Pipeline Parallelism
 - Parameter-efficient training
 - Pruning/Sparsification or Quantization → impacts quality
 - Google achieved large-scale LLM training via INT8 Quant



Large-Scale ML Systems require Reliability

- Large number of **computation** nodes (servers, edge/mobile devices)
 - The devices are prone-to-failure at any time (dropouts)
 - The devices are heterogenous in configs (stragglers)
- Nodes are connected via **communication** links
 - The communication can be become noisy/unreliable
 - Networks are volatile and gets congested
- How can we minimize their impact (reliability?)
 - MLSys configs need to be auto-tuned
 - Tuning should be system informed (not arbitrary) to guarantee job completion
 - MLSys need to be adaptive to varying conditions

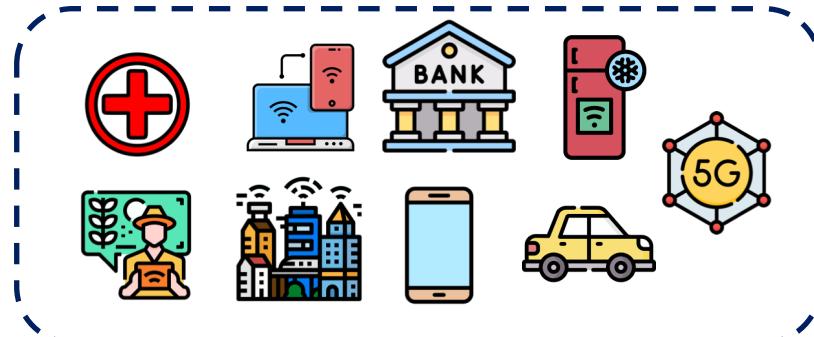


*ResNet20 – CIFAR10

WHAT WE HAVE BEEN DOING?

New distributed methods evolved → Federated ML

User Data is Distributed at Edge!



- Internet of Things (IoT)
- Healthcare
- Finance
- Industry
- Smart-city/grid
- Telecommunications
- Self-driving vehicles
-

Apple: Voice recognition

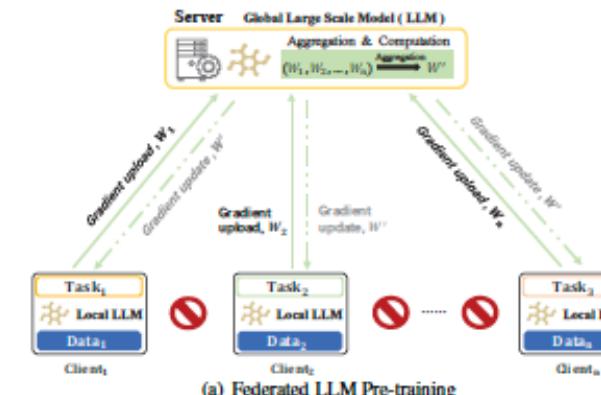
MIT Technology Review

Featured Topics Newsletters Events Podcasts

SIGN IN

SUBSCRIBE

If you've got an iPhone, you may have noticed a change in Siri's behavior in the past year. The voice assistant on the phone will "wake up" when you say

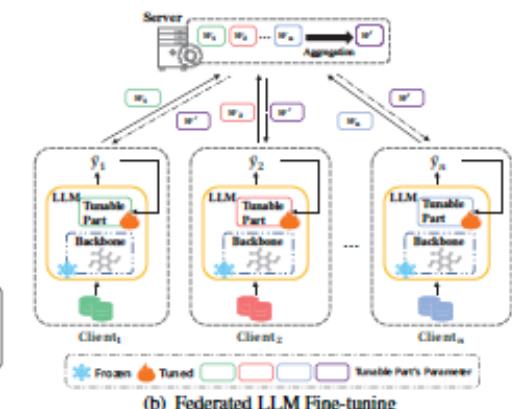


(a) Federated LLM Pre-training

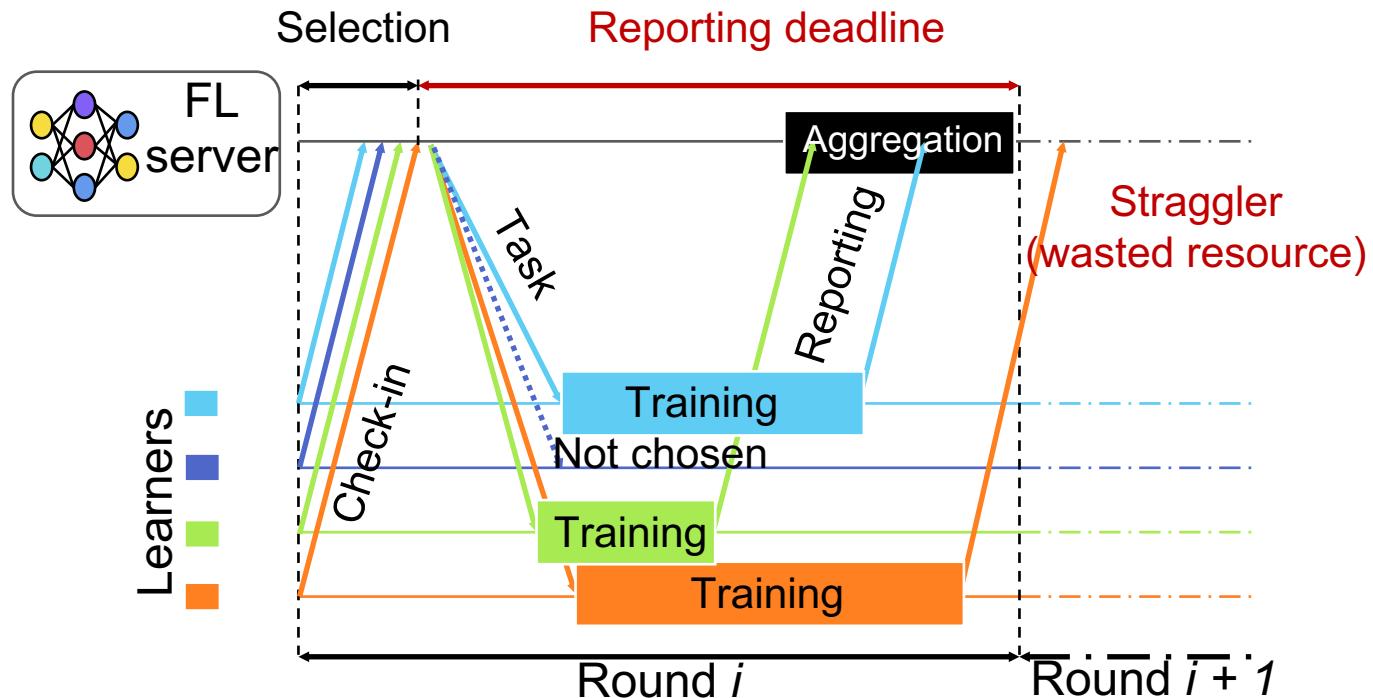
Gboard next-word prediction

Using FL,
better next-
word predict
accuracy:
+24%

A. Hard, et al. Federated Learning for Mobile Keyboard Prediction. arXiv:1811.03604



Federated Model Training

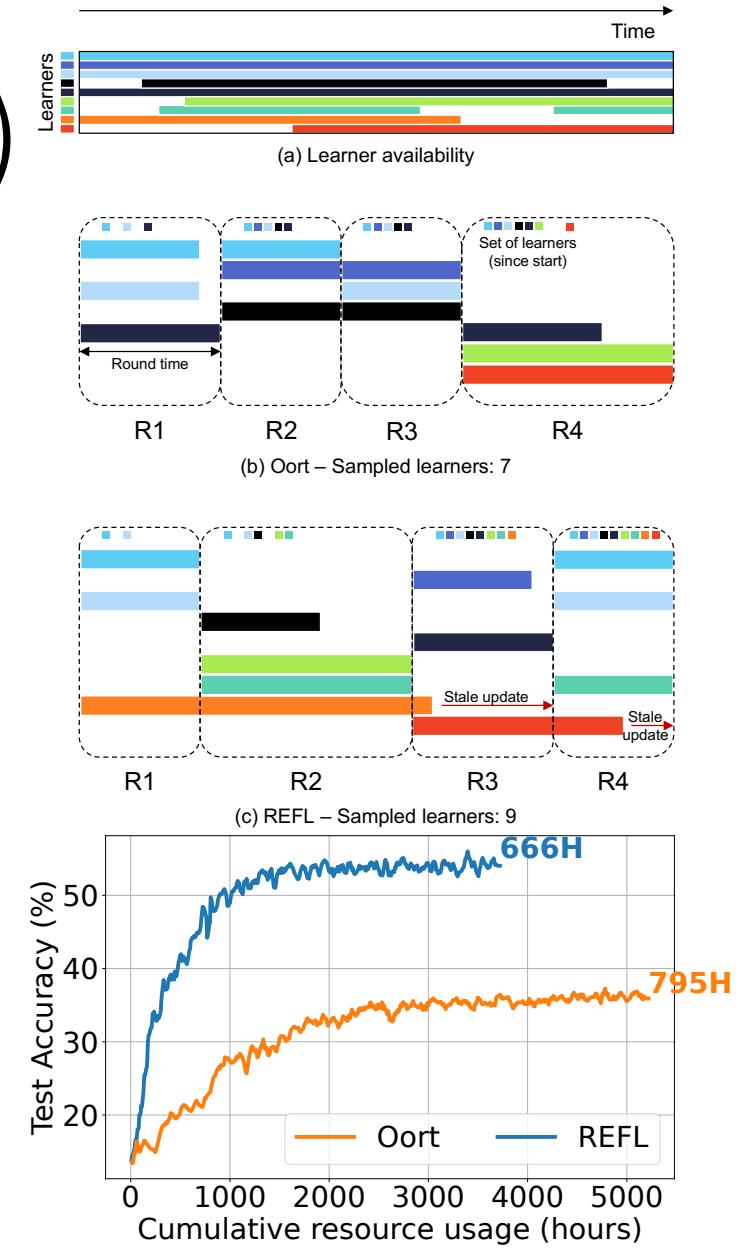


Heterogeneity in FL impacts QRS!

- Heterogenous data distributions \rightarrow non-IID setting (**quality**)
- Diverse hardware and network capabilities \rightarrow stragglers (**reliability**)
- Clients are not always available/fail \rightarrow fault-tolerance is hard (**quality/reliability**)
- Clients are not always faithful \rightarrow combating adversaries (**quality/security**)

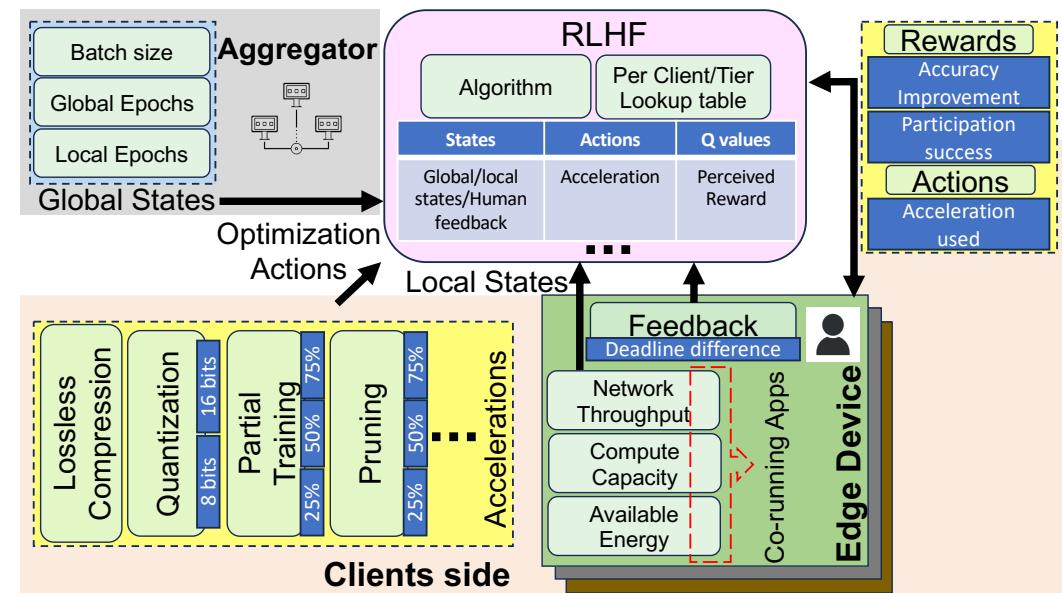
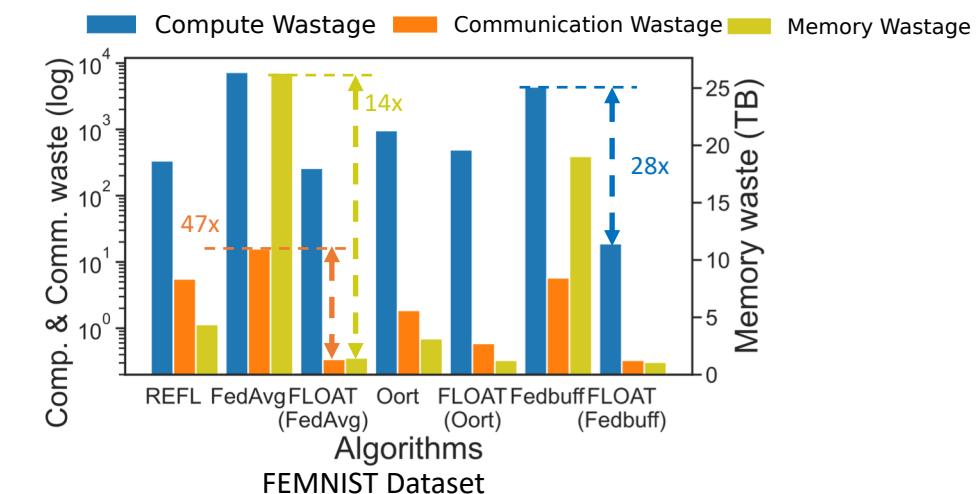
Data/Resource Efficiency (Quality)

- Data/Resource diversity vs efficiency tradeoff
 - Diversity → improve clients' inclusion (i.e., data)
 - Efficiency → reduce compute/comm consumed
- REFL: Resource-efficient FL framework
 - Intelligent selection to maximize diversity
 - Novel stale aggregation to improve efficiency
 - >2X quality improvement over SOTA methods
- Published in ACM EuroSys'23
 - <https://dl.acm.org/doi/abs/10.1145/3552326.3567485>
 - Evaluated by ACM AE <https://github.com/ahmedcs/REFL>



Auto-tuning FL (Reliability)

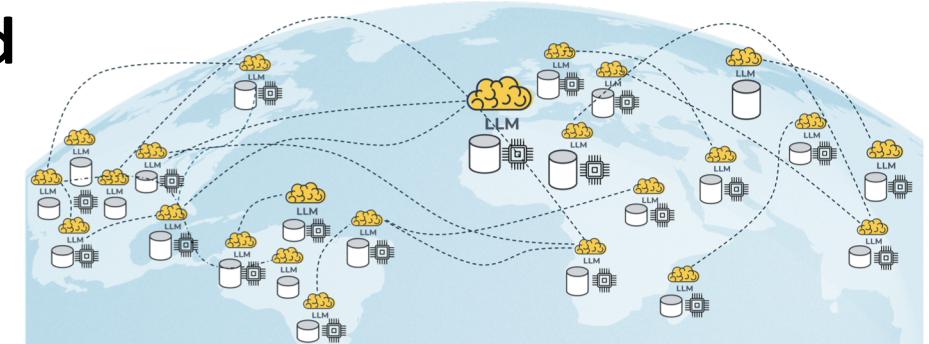
- Auto-Tuning in FL is difficult problem
 - How to **choose the right acceleration and configuration** for thousands of devices?
 - Dynamic environment -> **infinite possible system conditions unknown by the server.**
- FLOAT: Auto-tuning for FL Systems
 - Reinforcement Learning with Human Feedback
 - Up to 53% better reliability over SOTA methods
- Published in ACM EuroSys'24
 - <https://dl.acm.org/doi/abs/10.1145/3627703.3650081>
 - Evaluated by ACM AE <https://github.com/AFKD98/FLOAT>



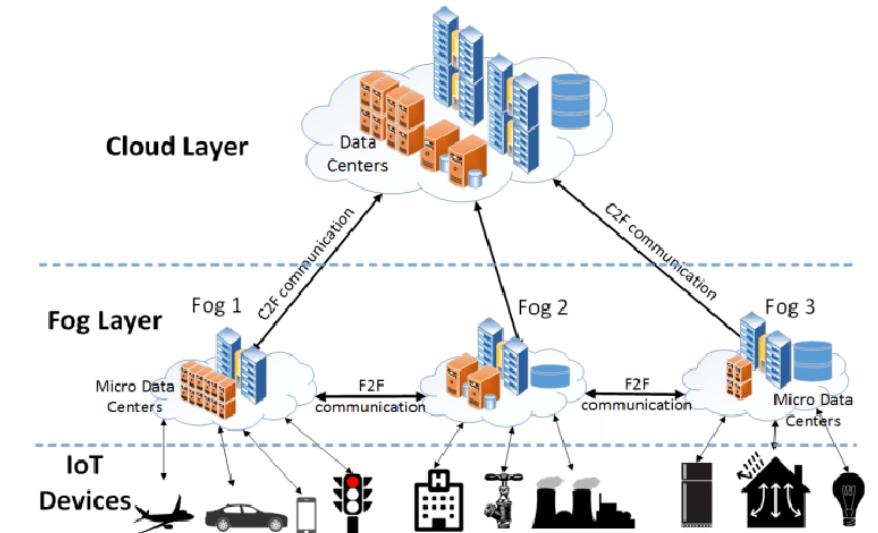
WHAT IS NEXT?

How about the Future?!

- The future for Deep Learning & LLMs is **Federated**
 - FL can help leverage planet's unutilized data and computational resources, for LLM training.
 - Federated LLM training can be done with affordable hardware configurations
 - *Federated LLM training offers competitive performance with centralized training.
- Leveraging the **Edge-to-Cloud Continuum**
 - Scalable MLSys via multi-tiered approach
 - Support of system architectures and protocols
 - Don't forget about **privacy and security**
 - Consider the capacity vs latency trade-offs
 - Cloud is resourceful but has high latency
 - Edge has low-latency but is limited in resources



*Large Language Model Pre-training will be Federated in future



Most importantly, as a community we need to make our solutions **Open-Source**

How can we enable this?

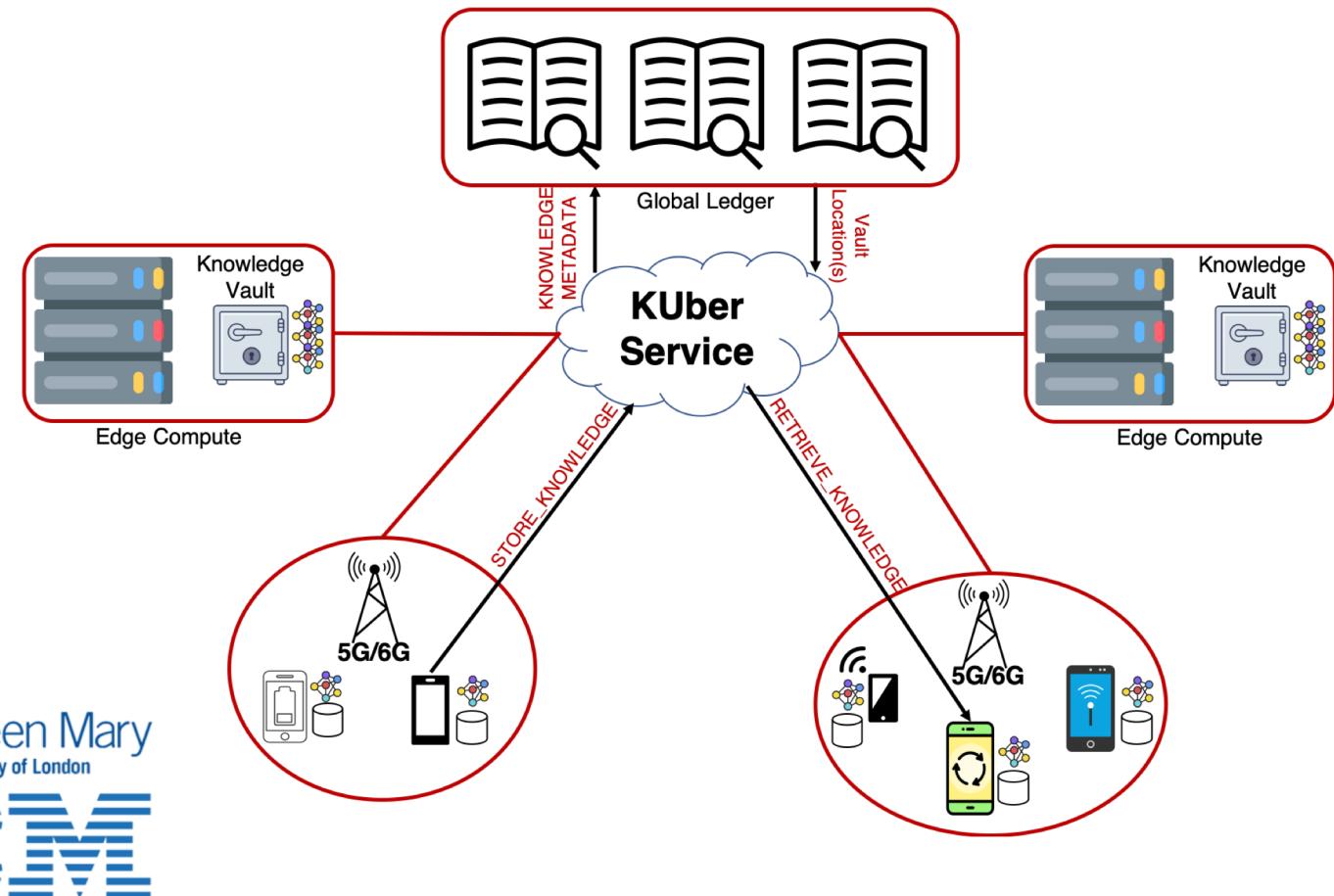
NextGen MLSys should be

Efficient → Produce high **Quality** models in reasonable cost/time via knowledge exchange
Scalable → **Reliably** support large number of distributed & dynamic learners

Privacy → **Security/privacy** of user data

KUber: Knowledge Delivery System for ML at Scale

<https://kuber.org.uk>



UK Research
and Innovation

Engineering and Physical Sciences
Research Council

NOKIA Bell Labs

Thanks

To follow-up, please reach me at ahmed.sayed@qmul.ac.uk

If you are intrigued by these problems,
Please reach out to collaborate with us

<https://sayed-sys-lab.github.io>

