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Data lives at the Edge

* Billions of phones & IoT devices constantly generate data

* Data enables better products and smarter models
* On-device processing (e.g., inference for mobile keyboards)
* advanced specialized hardware (e.g., GPU and NPUs on mobile/loT devices)

* Benefits
* Improved latency

a
* Works offline [ __3
» Better battery life y @-
* Privacy advantages e

What about analytics & learning?




Centralized vs Federated Learning

Central Server Model updates

&

Global model

* Centralized Training: froo
e Central (Data) server E
e Expensive data movement
* Communication-intensive
* Privacy concerns

* Federated Learning:
* Central (Aggregation) server
* Model exchange 5
 Communication-efficient
* Privacy-preserving (Differential privacy + secure aggregation)




Practical Use-cases of Federated Learning (FL)

What are good applications for FL?

* On-device data is more relevant than server-side data (or lack of it)
* On-device data is privacy sensitive or large to communicate

* Labels can be inferred naturally from user interaction

Apple: Voice recognition
Gboard: next-word prediction AT RS e =

Artificial intelligence / Machine learning

How Apple personalizes Siri without
hoovering up your data

The tech giant is using privacy-preserving machine learning to
improve its voice assistant while keeping your data on your phone.

Medical Imaging

by KarenHao December 11,2019

Using FL, better next-
word prediction
accuracy: +24%

Ng D, Lan X, Yao MM, Chan WP, Feng M. Federated learning: a
collaborative effort to achieve better medical imaging models
for individual sites that have small labelled datasets. Quant

Imaging Med Surg. 2021 4

A. Hard, et al. Federated Learning for Mobile Keyboard Prediction.
arXiv:1811.03604




Federated Learning Life-cycle
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Non-Practical Selection Methods

* Most existing methods aim to improve the time-to-

Reduce Time

FedCS (icc’18), Oort (osprai) AdaPow (AISTATS’22)
* Biases the client selection to reduce the * Biases the client selection towards ones
training time by exploiting the fast learners with high loss to boost model quality
5 oo Disregards clients’ availability
025 (low inclusivity)

Availability Duration (mins)

FedCS - T. Nishio, R. Yonetani, Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge, ICC, 2018
Oort = F. Lai, X. Zhu, H. V. Madhyastha, M. Chowdhury, Efficient Federated Learning via Guided Participant Selection, USENIX OSDI, 2021
AdaPow - Yae Jee Cho, Jianyu Wang, Gauri Joshi, Towards Understanding Biased Client Selection in Federated Learning, AISTATS, 2022 6



Availability does NOT matters in |ID case

* Availability does not impact the model quality
* Oort in IID data distribution = client’s data are uniformly distributed
* Even biased selection (fast learners) = still can capture the global data distribution
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Motivation — Availability matters in non-IID case

* Availability can impact model quality
* In non-1ID data distribution = every client’s data samples are important
* Lack of inclusive selection = hard to capture the global data distribution
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Takeaway & Proposed Solution

* Existing methods disregard client availability in the selection
* Biased selection can result in low resource diversity

[l

. Availability-Aware Federated Learning

 Selection: prioritize selection of least available learners = Increases
1 Availability Prediction Module: on-device prediction models (no privacy violation)
1 Hybrid Selection Method: the selection leverages both availability prioritization and random sampling

In the paper > more detailed description and discussion of the algorithm



System Design
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An lllustrative Example

(a) Learner availability

+ EEE R ET

A2FL selects among online clients using availability info and breaks ties by selecting at random

R1

Training Rounds
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An lllustrative Example

(a) Learner availability

A2FL may select some stragglers but improves diversity, Oort only selects the fast learners
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Time

* (a) Learner availability

An lllustrative Example

A2FL selects clients with the least availability, Random selects regardless of future availability
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An lllustrative Example
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An lllustrative Example

(a) Learner availability f

A2FL is able to achieve higher client diversity which improves the statistical efficiency of the model

__________________
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Experimental Evaluation

* FL Benchmarks using Google’s Speech Recognition task [1]
* VVarious data distributions: IID, Label-limited (non-IID)

Heterogenous clients Heterogenous availability
Device compute profiles (Al benchmark) User availability trace of 136K clients [2]
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[1] F. Lai et al., “FedScale: Benchmarking Model and System Performance of Federated Learning”. In ICML, 2022
[2] C. Yang et al., "FLASH: Heterogeneity-Aware Federated Learning at Scale" in IEEE Transactions on Mobile Computing, 2022



Evaluation of A2FL

* A2FL = best model quality with least amount of resources and time
* It improves over all the other methods in both IID and non-IID cases
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Evaluation of A2FL

* Availability prioritization leads to better diversity
e This is evident by the high rate of unique clients for A2FL (close to random)

e This is with even lower number of updates (i.e., higher stragglers).
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Takeaways

* Heterogeneity is a major challenge for FL:
 Model quality degradations are not acceptable, esp. in non-IID settings
* Behavior heterogeneity impacts the quality even more.

 To tackle heterogeneity = adapt to availability dynamics of the clients

. leverages support of on-device availability prediction module and prioritizes
the clients with least availability =2 in model quality.

* Furture Work & Technical Challenges
* How to deal with mis-information from malicious/non-faithful learners?
* How to fine-tune knobs to control the trade-off betwen efficiency & diversity?



Thanks

Q&A

For further questions, please reach out to ahmed.sayed@gmul.ac.uk

If interested in solving real-world problems! g%
Join us at https://sayed-sys-lab.github.io I
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