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Abstract— In a recent development, reconfigurable clouds 
become a viable solution to overcome practical problems in 
clouds, such as scalability, delay, etc., by offloading computation 
tasks to reconfigurable hardware, FPGA. Several existing 
techniques, such as TCP/IP Offload Engine (TOE) and 
Lightweight Transport Layer (LTL), are still hard to be 
implemented in real-world deployment due to large overhead or 
stringent dependency of the underlying network. In this paper, 
we propose STRIDE, a novel inter-FPGA data communication 
protocol, to provide reliable end-to-end communication which 
addresses practical problems in deployment. In our design, 
STRIDE leverages FPGA’s abilities through programming, 
such as precise timestamping, to make more accurate 
measurement on end-to-end queuing delay and deliver more 
precise control in managing traffic in cloud. We implement 
STRIDE on a FPGA-based network experimental platform and 
demonstrate that STRIDE reduces various hardware resources 
consumption by 36% to 49% compared to TOE. Additionally, it 
also improves flow completion time in comparison to TOE by 
2.2X. We further demonstrate STRIDE outperforms DCTCP 
and TCP-Vegas in OMNET simulator by up to 1.8X and 2.3X 
on average and 99th percentile respectively in large scale setting. 

I. INTRODUCTION  
Semiconductor industries have been struggling to keep up 

with the rapidly growing demand for computing power in 
cloud to support applications like big data and deep learning 
[1,2], and have reached their limit in overcoming practical 
problems such as scalability, delay, etc. This is because 
modern cloud architecture relies heavily on servers’ CPU 
cores to run different network stack for different policies, 
such as virtual network, load balancing, firewall, security, 
etc. This may result in taking away  processing power from 
VMs. Many existing ASIC (e.g. DPDK), multicore SoC, and 
RDMA based NICs allow the network stack to be offloaded 
to hardware. However, if there is a required feature that 
cannot be handled in the hardware, then the stack must be 
reverted to the software. This also means these technologies 
are not flexible to keep up with the dynamic policy change in 
cloud.  

Reconfigurable computing offers a great potential to 
resolve the aforementioned problems through utilizing 
reconfigurable, Field-Programmable Gate Arrays (FPGA) 
[3]. It is a programmable hardware that allows full offload 
host networking to hardware, providing more flexibility in 
adapting to new solutions. Additionally, FPGAs can provide 
infrastructure operators with the capabilities to achieve high 
throughput, more predictable latency, lower power 

consumption. With this FPGAs, servers in cloud platforms 
can harvest the above benefits to improve applications’ 
performance for the clients, as well as high system utilization 
for the operator (e.g. bandwidth, CPU, etc.). Another 
advantage is FPGAs can be quickly inserted into an existing 
system to enhance system performance without altering the 
system (“bump-in-the-wire”) [3,4,5]. Nevertheless, despite 
all the previous benefits of FPGA devices, there is little study 
on how to effectively exploit these benefits in 
implementation. 

One way to exploit FPGA is to offload computation task 
of the transport layer protocol (e.g. TCP) to FPGA. TCP/IP 
Offload Engine (TOE) [6,7], a pioneering work on offloading 
protocol to FPGA, allows applications to offload data without 
copying and performing interrupt handling in the kernel, 
reducing processing delay in TCP/IP stack [7]. Additionally, 
TOE is compatible to legacy TCP/IP and does not require 
switch support. However, due to implementation complexity 
and resource consumption, TOE does not fully offload TCP 
into FPGA, i.e. some parts of the processing are still done in 
the kernel [8]. Later in this paper, we provide a discussion on 
the implementation challenges in fully offloading TCP 
processing (and any existing transport layer protocols) to 
FPGA.  

Another work of the same theme, Lightweight Transport 
Layer (LTL) [3] was proposed to provide low latency 
connection while avoiding packet drop in inter-FPGA end-
to-end connection settings. To address reliability, the authors 
propose a low-layer level congestion control scheme, similar 
to DC-QCN [9]. LTL utilizes Priority Flow-Control (PFC) 
[10] to slow down incoming traffic to a switch when 
congestion is detected. LTL also employs ECN to signal end-
hosts about a congestion. However, the authors do not 
provide detailed descriptions on how their congestion control 
scheme is implemented and offloaded into the FPGA device.  

We find that there is design incompatibility between the 
Congestion Control (CC) schemes (such as DCQCN and 
TIMELY) and the corresponding hardware design. This 
incompatibility not only limits the full utilization of FPGA, it 
may also result in severe system performance degradation 
caused by the following phenomena occurring at the sender’s 
side: (𝑖) Multiplication and division operation required for 
computing congestion window (cwnd) takes up the majority 
of the processing resources in FPGA. (𝑖𝑖) The mechanism 
used to keep track of packet state (e.g. which packets has been 
ACKed and transmitted, or not, or retransmitted, and so on.) 



occupies a large portion of on-board memory of the FPGA 
device. Moreover, memory allocated for multiplication and 
division operations further increases the memory cost. The 
details on these observations are discussed in Section II.   

Therefore, the question is: How to design a CC scheme 
that is compatible with hardware design such as FPGA? To 
address this question, we first must consider a clean-slate 
solution that can be fully offloaded to FPGA. This is because 
in order for a solution to be deployment ready, first, the 
solution must be compatible with legacy commodity switches 
that are commonly used in cloud (or datacenter network). 
Second, datacenter network is typically made up of tens of 
thousands of switches and servers [11]. For these reasons, 
from network management and maintenance perspective, the 
solution must require minimal network reconfiguration. 
Driven by these two practical motivations, we consider delay-
based scheme. Moreover, the scheme must be able to achieve 
low CPU, memory, and power consumption. At last, the 
design must be able to achieve basic CC mechanisms, such 
as end-to-end reliability, congestion window adaptation, and 
so on.       

In this paper, we present a novel transport protocol, 
STRIDE (Single-TRIp-time-based reliable Data transport 
protocol for the rEconfigurable cloud) that is specifically 
designed for reconfigurable cloud. STRIDE is a lightweight 
reliable data transport protocol for inter-FPGA 
communication that imposes lower overhead on resource 
utilization and bandwidth. This is achieved by replacing the 
computationally heavy multiplication and division operation 
with a series of the simpler one-clock-cycle bit-shifting 
operation to compute and adjust transmission rate. This 
allows the entire computation to be done in FPGA, resulting 
in quicker responses to congestion.  

STRIDE also takes advantage of the functionalities 
available in FPGA, such as packet timestamping in hardware 
and the high FPGA clock precision, which enables STRIDE 
to accurately measure end-to-end delay or single trip time 
(STT) delay between two end-hosts. Thus, utilizing STT as a 
congestion signal allows STRIDE to have better control on 
the transmission rate, which results in lower packet drops. 
Importantly, this makes STRIDE a plug-and-play solution 
without requiring additional reconfiguration in network. 
Finally, STRIDE also provides basic functionalities for end-
to-end reliability, such as packet ACKing, retransmission, 
three way handshaking, and connection termination. 

To evaluate STRIDE’s performance, we build packet 
processing modules and implement an actual prototype using 
FPGA Accelerated Switches platform [15,16], which we then 
deploy in our testbed. In our testbed experiments, we 
compare STRIDE to the state of the art (TOE) and 
demonstrate that STRIDE improves flow completion time 
(FCT), or time required to complete a flow, by at least 2.2X. 
The detailed description of system implementation and 
experimental results are provided in the evaluation section. 
Additionally, STRIDE also reduces computational and 
memory cost by up to 49% and 38% respectively compared 
to TOE. In large scale scenario, we demonstrate STRIDE 
outperforms DCTCP and TCP-Vegas through OMNET 
simulator [28] by up to 1.8X and 2.3X on average and 99th 
percentile respectively. 

II. RELATED WORK 
One of the early developments on TCP offloading 

technology for high-speed network is TCP offload engine 
(TOE). It allows hardware to offload the entire TCP/IP stack 
network controller, reducing the processing overhead in the 
CPU and server I/O. Such overheads include connection 
establishment and termination, TCP checksum, and sliding 
window for congestion control and reliability [6], which 
speeds up the processing speed. However, at implementation 
level, CPU is still required for TCP connection management 
function to process received and sent packets. For example, 
every socket created in application’s user space corresponds 
to a socket structure in kernel space. Thus, every system call 
eventually has to invoke a function in the kernel. For these 
reasons, offloading TCP protocol from Linux system core 
function to a dedicated processing unit (hardware) can be very 
challenging and complex. This is because TCP connection 
management depends on functionalities residing in kernel 
space. There are a number of recent FPGA projects that focus 
on physical and data link layer [17], but they do not consider 
transport layer functions such as congestion control scheme 
due to implementation challenges described above.  

LTL provides congestion management to avoid early 
packet drops [3] which incorporates ECN [18,24] based DC-
QCN scheme [18] and Priority Flow Control (PFC) [10] in 
their implementation of inter-FPGA network protocol. 
However, ECN and PFC based schemes require switch 
support. Additionally, even with switches that support ECN 
and PFC, the scheme requires network operator to configure 
the switches in datacenter, which may not be efficient as a 
typical datacenter is made up of thousands of switches. 
Additionally, the utilization of PFC potentially may lead to 
deadlock caused by PDF pause frame [26] stalling the network 
from delivering data. Similarly, NDP [30] is another 
reconfigurable cloud solution that requires switch support (P4 
Switches). 

III. BACKGROUND  
Despite benefits that FPGA offers, we discover challenges 

of implementing a complete offloading congestion control 
scheme to FPGA. In our early designs, we first attempted to 
implement TCP and TIMELY in FPGA, and then performed 
simple experiments in our testbed with two servers connected 
through two serial switches. Through our endeavors, we learn 
that it is not only difficult to fully offload a protocol to FPGA, 
our experiments also show that the system performs poorly. 
The lessons we learned from implementing a fully offloaded 
FPGA presented in this section provides the insights to the 
design of our CC scheme for reliable end-to-end inter-FPGA 
data transfer. 
Lesson 1: Computational cost. Offloading the entire TCP 
stack to FPGA is computationally expensive, caused by the 
complex mechanism in calculating congestion window size in 
hardware. Generally, the high computation cost comes from 
multiplication and division operations. In multiplication 
operation, for every single partial product generated by 
multiplying two bits, it requires multiple rounds of bits 
shifting and addition operation. Moreover, since division 
involves several multiplication operations, the computation 
cost becomes even more expensive. This is because that 



computation involves multiplying several factors by the 
divisor to obtain approximately 1, followed by multiplying the 
outcome from previous multiplication operations by the 
dividend. One of the main calculations in any CC scheme is 
the updates of the transmission rate which relies mainly on 
multiplications and divisions. Hence, it becomes 
computationally expensive to update the rate, especially for a 
scheme that requires many multiplication and division 
operations like TIMELY does. That cost increases 
proportionally with the number of flows sharing the NIC.  
Lesson 2: Memory cost. Typically, a CC scheme needs to 
keep track of some per-packet state such as SEQ/ACK 
numbers, inflight packets, packets that are ready to be 
transmitted, packets that are not ready for transmission, .., etc.; 
these information needs to be stored in the on-board memory 
inside the FPGA card. Moreover, the scheme also needs to 
allocate additional memory space to keep track of the partial 
product from multiplication and division operations. The 
amount of memory used may result in exhausting the memory.  
Therefore, based on the above lessons, we ought to rethink 
how congestion control scheme should be re-designed to 
achieve the objective of complete offloading on the FPGA.  

IV. STRIDE OVERALL DESIGN 
In this section, we provide a description of STRIDE 

framework design, discuss STT, and our CC scheme.  
A. STRIDE Framework 

STRIDE is a lightweight transport protocol that provides 
full-duplex and reliable delivery. We illustrate an overview 
of STRIDE’s workflow Figure 1. 
     Packet format. STRIDE builds on top of UDP which 
provides the basic transport layer multiplexing function. 
STRIDE packet header (Figure 2) is encapsulated in UDP 
packet, allowing STRIDE to be more compatible with legacy 
system. Additionally, since UDP is a lightweight protocol, it 
keeps the packet processing cost low. Moreover, utilizing 
UDP also reduces the communication complexity caused by 
middle-box protocols [26] (e.g. NAT, Firewall, etc.). 
Establishing and terminating a connection. To establish a 
connection between two hosts, STRIDE performs a three-way 
handshaking for connection establishment and connection 
tear-down functions similar to the ones of TCP.  
Congestion Control. In our design, we first address the 
challenges described in section III. Then, we consider more 
practical and deployment aspects of the scheme, such as  
system configuration and scalability issues. We also consider 
the limitations of RTT delay measurements [13, 14]. To 
address the former, we design STRIDE as a pluggable system 
which requires minimal switch features. This differentiates 
STRIDE from ECN-based solutions (e.g. DCTCP [19], 
DCQCN [9], and ECN-RED [12].) which require configuring 
switches and may not be scalable in a large-scale datacenter 
environments. To address the latter limitation, STRIDE 
leverages hardware technology in FPGA such as 
timestamping to measure accurately the one-way end-to-end 
delay. This allows STRIDE to perform a more fine-grained 
control loop for datacenter congestion control, where a flow 
in datacenter only lasts for microseconds [13,19]. For this 
reason, STRIDE utilizes STT to detect congestion instead of 
RTT.        

  
Fig. 1: Overview of STRIDE 

 
Fig. 2: STRIDE packet structure  

B. Single Trip Time (STT) Measurements 
Clock drift problem in NICs makes measuring STT very 

challenging. One possible solution is to synchronize on-board 
clock using Precision Time Protocol (PTP) [20]. This scheme 
can synchronize system clock down to sub-microseconds 
granularity. However, PTP is not scalable in a large-scale 
environments. As reported in [20], PTP requires all end-hosts 
and switches to be in the same multicast group. However, for 
scalability purposes, today’s networks are divided into 
multiple smaller clusters for more effective and efficient 
large-scale network management. Additionally, PTP relies on 
centralized controller to keep track of the “right” clock. 
Nevertheless, the controller can become overloaded 
considering the scale and size of modern datacenter networks.  

In contrast, FPGAs provides much more precise clock 
cycles and have lower time dilation among multiple cards 
[21], which makes this technology a more suitable solution for 
large-scale networks. To verify its clock precision, we 
perform testbed experiments with two servers connected by 
two serial 10GB switches. We generate a single flow traffic 
using iperf. Then, we measure the time difference ∆t between 
two observed STTs at time 𝑡' and 𝑡'() at both the sender and 
receiver, where, ∆t = 	STT(𝑡 + 1) − STT(𝑡). Next, we observe 
in multiple experiments running over 5 minutes interval that 
consistently the time difference is ∆t < 1	𝑛𝑎𝑛𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠 for 
every 1 millisecond interval. The error ∆t is sufficiently small 
for an accurate STT approximation in datacenter, where a flow 
typically completes in microseconds [13]. The precision 
comes from FPGA’s crystal error that is within 0.0025%, 
which results in less than 1 nanosecond error margin. In other 
words, FPGA allows STRIDE to obtain STT at 10 
nanoseconds accuracy. Moreover, this precision also allows 
multiple FPGA cards to be programmed to achieve the same 
cycle, so they can operate at the same frequency [22] resulting 
in a significantly more precise clock synchronization 
compared to NIC. 
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To measure STT, STRIDE uses the timestamping function 
available in FPGA by programming. We have 𝑆𝑇𝑇(𝑡) =
	𝑡';< −	 𝑡'=< , for 𝑡';< > 	 𝑡'=< > 0 , where 𝑡=<'  and 𝑡;<'  denote 
timestamp at the sender (TX) and receiver (RX) on packet 𝑖. 
Here, 𝑆𝑇𝑇(𝑡)  can be interpreted as an estimation delay 
between TX and RX at time 𝑡 . Additionally, 𝑆𝑇𝑇(𝑡)  is 
computed at RX upon receiving packet from TX, which 
carries 𝑡'=< in its STRIDE header. 
C. Congestion Control  

We describe our congestion control mechanism for inter-
FPGA without in-network support. STRIDE is a rate-based 
scheme, whose congestion avoidance follows gradient-based 
algorithm [13]. In other words, rate is adjusted according to 
the derivative of the queueing delay with respect to time. This 
is realized by accurately measuring the STT on a per-packet 
basis. Hence, STRIDE can react to queue buildup without 
waiting for a standing queue to form, eventually allowing 
STRIDE to achieve low latency.  

 Algorithm 1 provides the description of our congestion 
control scheme. Generally, STRIDE maintains rate 𝑟(𝑡) per 
connection at time 𝑡  and updates its rate every RTT by 
calculating delay gradient using two consecutive STT 
samples collected at the receiver. In our design, we employ 
two thresholds 𝑇ABC  and 𝑇D'ED  to detect and respond when a 
link is underutilized or experiencing overly high latency 
respectively. 𝑇ABC  and 𝑇D'ED  are related to min-STT, which is 
the transmission time without congestion. However, when 
𝑇ABC < 𝑟(𝑡) < 𝑇ℎ𝑖𝑔ℎ , rate 𝑟(𝑡 + 1)  is decided by normalized 
gradient using the concept proposed in [15]. If the normalized 
gradient ≤ 0, then it means there is room for a higher rate and 
𝑟(𝑡 + 1) should be increased (line 20). Otherwise,  𝑟(𝑡 + 1) 
is decreased (line 22).  

D. Analysis 
Low computational cost scheme. To achieve a lower 

computational cost, STRIDE uses bits shifting to calculate its 
transmission rate. To compute line 4, 𝛼 ∈ K)

LM
N which allows 

the computation of 𝑟(𝑡 + 1) to be done by utilizing bit shifting 
together with addition and subtraction operations. To update 
transmission rate (line 10), 𝑟(𝑡 + 1)  is adjusted with the 
following equation:  

𝑟(𝑡 + 1) = 	𝑟(𝑡)O
1
2'

Q

'R)

= 		𝑟(𝑡)	S1 −	
1
2QT,													

(1) 

where 𝑘 is the number of shifts required. In our experiment, 
we have 𝑘 = 3. In practice, 𝑘 can be relatively small because 
it has diminishing returns property as 𝑘 → ∞. This means the 
impact of 𝑘  diminishes as 𝑘  grows larger. Similarly, to 
compute normalized gradient in eq. (2), we use subtraction 
operations and count the number of loops until the reminder 

is less than 𝑆𝑇𝑇Z'[ = 𝑚𝑖𝑛	{𝑆}, where  𝑆 is a set of observed 
STTs (line 13 to18). 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡	 =
∆𝑆𝑇𝑇
𝑆𝑇𝑇Z'[

.																							 (2) 

 

 

Algorithm 1: STRIDE Congestion Control 
1. 𝑆𝑇𝑇[cC =	𝑆𝑇𝑇BAd = ∆𝑆𝑇𝑇 = 0       //  Initialization  
2. 𝑆𝑇𝑇Z'[ = 𝑚𝑖𝑛	{𝑆}  // 𝑆 is a set of observed STTs 
3. Procedure  STRIDE (𝑆𝑇𝑇[cC	) 
4.     ∆𝑆𝑇𝑇 = (1 − 	𝛼)	.		∆𝑆𝑇𝑇 + 		𝛼	(𝑆𝑇𝑇[cC − 𝑆𝑇𝑇BAd)	 
5.     𝑆𝑇𝑇BAd = 	𝑆𝑇𝑇[cC 
6.     if  𝑆𝑇𝑇[cC <	𝑇ABC 
7.          rate 𝑟 = 𝑟 + 𝛽  // increment with step size 𝛽 > 0 
8.          return  
9.     if 𝑆𝑇𝑇[cC ≥ 	𝑇D'ED 
10.         Solve eq. (1) with  𝑘 = 3 
11.         return 
12.     if  𝑇D'ED >	 𝑛𝑒𝑤hii > 	 𝑇ABC 
13.          ∆= ∆𝑆𝑇𝑇 
14.          normalized_gradient = 0 
15.          while  ∆	> 𝑆𝑇𝑇Z'[     // solving eq. (2) 
16.                  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡++ 
17.                  ∆= ∆ −	𝑆𝑇𝑇Z'[ 
18.          end while 
19.          if 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑Ejkd'c[i ≤ 0  
20.                𝑟 = 𝑟 + 𝜔. 𝛽        // increase rate with weighted 𝛽  
21.          if 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡	 > 0 
22.                 𝑟 = 𝑟	. (1 − 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡)  
23.          return 
24. end procedure  

 

 

track of packet state (e.g. packet that has been ACKed, ready 
for transmission, needs to be transmitted, .., etc.), STRIDE 
allocates 64KB per packet in DDR SDRM at the sender. 
Tracking packets at different states is accomplished by 
maintaining a counter of the number of packets at different 
stages. This approach requires relatively smaller memory 
space compared to storing the entire packets. Memory space 
allocated to packets is released upon receiving its ACK.  
ACK generation is performed by the receiver and follows the 
same procedure of TCP acknowledgement scheme.  

 

STRIDE Reliability. When the receiver detects a missing 
packet, it notifies the sender with Negative ACK along with 
the sequence number of the missing packet. The sender then 
resends the missing packet and the subsequent packets upon 
receiving NACK. This idea is inspired by the classic GO-
back-N protocol [23,25]. However, the advantage of a single 
NACK packet over TCP’s duplicate packets (typically 3 
duplicate packets) is that a single NACK packet reduces 
computational cost and memory space for processing packets 
in FPGA. Additionally, single notification also speeds up 
retransmission process such that the sender can immediately 
resend the missing packet as soon as NACK is received, 
instead of waiting for multiple notifications like in TCP. 
Moreover, STRIDE also keeps a timer to detect packet drop. 
When a packet is dropped, STRIDE resends the packet that 
has not been ACKed. 



 
Fig. 3: STRIDE packet processing module.  

 

V. IMPLEMENTATION 
To evaluate STRIDE, we implement our solution in an 

open source FPGA Accelerated SwiTches (FAST) platform 
[15, 16], which provides multiple modular interfaces for 
FPGA developer. The FPGA board (iRouter board depicted 
in Figure 4) is equipped with Arria 5AGTMC3D3F31I5 and 
a flash memory to store file configuration of FPGA. The 
platform utilizes multi-core CPUs to allow software to 
communicate with FPGA through the PCIe bus. The line-
card board provides eight 1-GigE Ethernet ports and two 10-
GigE Ethernet ports.  

Hardware module design. Here, we present the hardware 
design and implementation of STRIDE modules in FPGA. 
Figure 3 illustrates the steps required to process the packets. 
When a packet arrives at the FPGA (at the sender or receiver), 
the packet is placed in SRAM to be processed by a Parser 
module, which parses different headers (e.g. STRIDE, UDP, 
IP, and MAC header) in the packet. After parsing, Parser 
module passes the information in STRIDE header to 
Arbitration (AR) module to determine packet type (e.g. ACK, 
NACK, FIN, or SYN packet) which processes the packet 
according to its type. For instance, when the AR module 
identifies NACK bit is set to 1, STRIDE immediately 
retransmits the missing packet according to the sequence 
number stored in STRIDE header and the subsequent packets 
in DRAM.  

AR module also counts the number of bits of an arriving 
packet and calls the timestamping module to timestamp the 
packet when the last segment of this packet arrived. After 
that, AR module creates STRIDE header and insert 
timestamping value into the header. Moreover, AR module 
fetches transmission rate from Rate Calculation (RC) module 
and relays it to the Send module. RC module employs 
algorithm 1 to determine its transmission rate. At the Send 
module, outgoing packets are stored in the DRAM and served 
in FIFO order onto the outgoing link.  

In timestamping module, the timestamp value is inserted 
into the packet by assigning the timestamps bits in STT field 
in its STRIDE header. FPGA performs the same timestamping 
mechanism at both the sender and receiver. In the sender, 
FPGA processes packet coming from applications, whereas in 
the receiver, FPGA processes packets coming from network. 

VI. EVALUATION 
In this section, we provide evaluation of STRIDE through 

experiments in our testbed with 10GB port switches and large 
scale simulation involving 250 nodes.   
A. Tested Experiment 
Experiment setups. As depicted in Figure 4, Our network 
topology consists of two servers, two iRouters, two switches, 
and IXIA emulator to create background traffic. The two 
iRouters are used as the sender and receiver; and the two 
servers are used for initiating transport and gathering 
information from iRouters for analysis. We consider fixed 
rate, random rate, and linear increased rate to emulate 
background traffic in datacenter network using Spirent n12 
emulators. Inspired by [13], STRIDE ACKs every 64 kb 
interval if there is no packet dropped, instead of ACK per 
packet (1500 byte). Through our testbed experiments, we 
observe that 64 kb provides STRIDE with the quickest time 
to adjust its transmission rate based on observed STT (Figure 
5). Here, we refer 64 kB interval as data segment size in this 
paper. By doing so, STRIDE also cuts down the 
communication overhead for ACK.    
Testbed experiments results. In our evaluation, STRIDE is 
compared to TOE, which is the state of the art FPGA based 
solution. Our experiments demonstrated that compared to 
TOE, as shown in Figure 6, STRIDE achieves significantly 
faster FCT across flow sizes (e.g. <10kb, 10kb-128kb, 
128kb-256kb, 256kb-2048kb, 2048kb-10240kb), which 
translates to 2.2x improvement on average. Our improvement 
factor is the ratio of compared FCTs over STRIDE’s FCT. 
These experiments demonstrate the benefits of fully offload 
CC scheme into FPGA, such that the processing speed is 
faster.  

We conduct further investigation to understand how and 
why STRIDE obtains better performance. We first observe 
that STRIDE accomplishes lower number of packets dropped 
compared to TOE across different flow size, as depicted in 
Figure 7. By utilizing gradient based scheme, STRIDE up 
to3x less in the number of packets dropped compared to TOE, 
resulting in significantly lower packet retransmission caused 
by packet dropped. This way, STRIDE achieves lower 
average FCT.   

Since STRIDE utilizes STT to determine its transmission 
rate, we investigate whether FPGA is also facing clock drift 
problem. To evaluate clock drift, we compare all STTs from 
a single flow to the observed first STT from the same flow. 
then, we measure how much the clock deviates since the 
connection is established. To ensure the measurement is not 
distorted by queuing delay in switches, we control the flow’s 
transmission rate such that buffer in switches is empty. The 
performance matrix used in our evaluation is the ratio of each 
different STT over the first observed STT in nanoseconds 
(ns) scale. When the ratio is 1, both STT at time 𝑡 and first 
observed STT is equal, such that STT(𝑡) = STT(1) for 𝑡 > 1, 
which means FPGA does not experience clock drift problem. 
Otherwise, the clock deviates. As illustrated in figure 8.a, 
FPGA attains significantly small clock deviation since the 
establishment of the connection, where the ratio difference is 
at most 0.009. In other words, FPGA maintains very close 
clock approximation to the actual clock. 



 
Fig. 4: Experiment topology 

 

 

  
  

To further validate the FPGA clock precision, we compare 
STT(𝑡) = STT(𝑡 + 1) for 𝑡 > 0 and show that the ratio of 
STT(𝑡) over STT(𝑡 + 1) is very close to 1 (Figure 8.b). This 
also demonstrates that clock deviation between subsequent 
STTs is also significantly small. For these reasons, by 
keeping clock deviation minimal, FPGA provides much more 
precise STT approximation, allowing STRIDE to be more 
sensitive to queue buildup, resulting in quicker reaction to 
congestion without waiting for packet dropped. Hence, 
STRIDE achieves a lower average FCT compared to TOE.   

Next, we investigate how much resources are required in 
FPGA to support STRIDE. Here, we measure the number of 
sets of arithmetic and logical operations in ALU, the amount 
of space required in memory (SRAM and DRAM), and the 
amount of block memory generator (BRAM) used in FPGA. 
In this experiment, we generate Iperf traffic in our testbed. As 
shown in table 1, STRIDE has better resource usage 
compared to TOE in all categories. This is because STRIDE 
achieves a lower processing overhead in FPGA by employing 
bits shifting technique and limiting the computation to just 
addition and subtraction operations (section IV). Thus, in 
achieving lower processing overhead, STRIDE has less 
information to store in the memory which results in lower 
space overhead. Moreover, by attaining a lower overhead in 
ALU and memory, STRIDE requires lower registration 
overhead in FPGA. Therefore, STRIDE achieves lower FCT.  

With a lower overhead, STRIDE requires lower power 
consumption, leading to better energy saving, especially in 
large scale datacenter setting with hundred thousands of 
servers.    

 
 

 

 

 

 ALUs Mem. Alloc. BRAM 
TOE 12468 2.294MB 392 

STRIDE 6339 1.4264MB 191 
Improvement 49.15% 37.82% 36.75% 

Table 1.  Resource usage on Arria V. 

Category I II III IV 
Flow Size <10b 10b-100kb 100b-1MB >1MB 

Table 2. Flow size categories. 

 
B. Large Scale Simulation Experiment 

Simulation setting: We employ OMNet++ simulator [28] to 
evaluate STRIDE at packet level and in larger scale scenario 
(256 hosts in FatTree based topology [27]). Here, STRIDE is 
compared to delay (TCP-Vegas [12]) and ECN (DCTCP 
[19]) based congestion control schemes with different traffic 
load described in table 2. The primary performance metric for 
comparison is the average FCT, and our performance factor 
is described as follows.  

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =	
𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑	𝐹𝐶𝑇𝑠
𝑆𝑇𝑅𝐼𝐷𝐸u𝑠	𝐹𝐶𝑇𝑠. 

If the improvement is greater (smaller) than one, STRIDE is 
faster (slower). 

Simulation results. Figure 9.a demonstrates that, on average, 
STRIDE achieves faster FCT across categories by up to 1.8x 
and 1.4x compared to TCP-Vegas and DCTCP respectively. 
Additionally, the outcome from average performance is also 
reflected in the 99th percentile, as illustrated in Figure 9.b.   
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The key observation on STRIDE’s improvement over 
TCP-Vegas is that TCP-Vegas uses RTT to measure 
congestion. However, RTT is known for its imprecision due 
to its distorted reverse delay. For this reason, without precise 
measurement queue build up in switches, TCP-Vegas may 
react slower and less accurate in responding to congestion. In 
contrast, with more precise measurement, STRIDE is more 
sensitive to queue build up and can react quicker to 
congestion leading to lower packet drop, as demonstrated in 
our testbed experiments.  

  
 
 For DCTCP, it relies on fraction of packets marked by 

ECN to detect the congestion level. However, DCTCP 
requires one RTT interval to observe fraction of marked 
packet [19]. This also means DCTCP requires one RTT to 
adjust its transmission rate to achieve the desired rate. In 
comparison, STRIDE is able to adjust transmission rate to the 
desired rate as soon as it receives ACK packet. In other 
words, DCTCP reacts slower to congestion compared to 
STRIDE, which also results in slower FCTs for elephant 
flows in DCTCP. Moreover, as illustrated in Figure 9, smaller 
flows benefit from both DCTCP and STRIDE. This is 
because both schemes share similar objectives of keeping 
queue in switch buffer low, resulting in faster FCT for small 
(mice) flows.   

 
VII. CONCLUSION 

Although FPGA looks as a promising solution to improve 
system performance, full adoption of this technology is 
limited by high computational cost and space requirement to 
fully offload CC into FPGA. To resolve this problem, we 
propose a CC that utilizes lower computation resource and 
memory space. We also show the benefits and strengths of 
STRIDE through testbed and simulation experiments.  
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