STRIDE: Single-Trip-time based Reliable Data Transport
Protocol for the Reconfigurable Cloud

"Wenwen Fu, ‘Tao Li, ’Ahmed M. Abdelmoniem, and ‘Zhigang Sun
1School of Computer, National University of Defense Technology. China
2Faculty of Computers and Information, Assiut University, Egypt
{fuwenwen, taoli, sunzhigang} @nudt.edu.cn, , ahmedcs@aun.edu.eg

Abstract— In a recent development, reconfigurable clouds
become a viable solution to overcome practical problems in
clouds, such as scalability, delay, etc., by offloading computation
tasks to reconfigurable hardware, FPGA. Several existing
techniques, such as TCP/IP Offload Engine (TOE) and
Lightweight Transport Layer (LTL), are still hard to be
implemented in real-world deployment due to large overhead or
stringent dependency of the underlying network. In this paper,
we propose STRIDE, a novel inter-FPGA data communication
protocol, to provide reliable end-to-end communication which
addresses practical problems in deployment. In our design,
STRIDE leverages FPGA’s abilities through programming,
such as precise timestamping, to make more accurate
measurement on end-to-end queuing delay and deliver more
precise control in managing traffic in cloud. We implement
STRIDE on a FPGA-based network experimental platform and
demonstrate that STRIDE reduces various hardware resources
consumption by 36% to 49% compared to TOE. Additionally, it
also improves flow completion time in comparison to TOE by
2.2X. We further demonstrate STRIDE outperforms DCTCP
and TCP-Vegas in OMNET simulator by up to 1.8X and 2.3X
on average and 99" percentile respectively in large scale setting.

I. INTRODUCTION

Semiconductor industries have been struggling to keep up
with the rapidly growing demand for computing power in
cloud to support applications like big data and deep learning
[1,2], and have reached their limit in overcoming practical
problems such as scalability, delay, etc. This is because
modern cloud architecture relies heavily on servers’ CPU
cores to run different network stack for different policies,
such as virtual network, load balancing, firewall, security,
etc. This may result in taking away processing power from
VMs. Many existing ASIC (e.g. DPDK), multicore SoC, and
RDMA based NICs allow the network stack to be offloaded
to hardware. However, if there is a required feature that
cannot be handled in the hardware, then the stack must be
reverted to the software. This also means these technologies
are not flexible to keep up with the dynamic policy change in
cloud.

Reconfigurable computing offers a great potential to
resolve the aforementioned problems through utilizing
reconfigurable, Field-Programmable Gate Arrays (FPGA)
[3]. It is a programmable hardware that allows full offload
host networking to hardware, providing more flexibility in
adapting to new solutions. Additionally, FPGAs can provide
infrastructure operators with the capabilities to achieve high
throughput, more predictable latency, lower power

consumption. With this FPGAs, servers in cloud platforms
can harvest the above benefits to improve applications’
performance for the clients, as well as high system utilization
for the operator (e.g. bandwidth, CPU, etc.). Another
advantage is FPGAs can be quickly inserted into an existing
system to enhance system performance without altering the
system (“bump-in-the-wire”) [3,4,5]. Nevertheless, despite
all the previous benefits of FPGA devices, there is little study
on how to effectively exploit these benefits in
implementation.

One way to exploit FPGA is to offload computation task
of the transport layer protocol (e.g. TCP) to FPGA. TCP/IP
Offload Engine (TOE) [6,7], a pioneering work on offloading
protocol to FPGA, allows applications to offload data without
copying and performing interrupt handling in the kernel,
reducing processing delay in TCP/IP stack [7]. Additionally,
TOE is compatible to legacy TCP/IP and does not require
switch support. However, due to implementation complexity
and resource consumption, TOE does not fully offload TCP
into FPGA, i.e. some parts of the processing are still done in
the kernel [8]. Later in this paper, we provide a discussion on
the implementation challenges in fully offloading TCP
processing (and any existing transport layer protocols) to
FPGA.

Another work of the same theme, Lightweight Transport
Layer (LTL) [3] was proposed to provide low latency
connection while avoiding packet drop in inter-FPGA end-
to-end connection settings. To address reliability, the authors
propose a low-layer level congestion control scheme, similar
to DC-QCN [9]. LTL utilizes Priority Flow-Control (PFC)
[10] to slow down incoming traffic to a switch when
congestion is detected. LTL also employs ECN to signal end-
hosts about a congestion. However, the authors do not
provide detailed descriptions on how their congestion control
scheme is implemented and offloaded into the FPGA device.

We find that there is design incompatibility between the
Congestion Control (CC) schemes (such as DCQCN and
TIMELY) and the corresponding hardware design. This
incompatibility not only limits the full utilization of FPGA, it
may also result in severe system performance degradation
caused by the following phenomena occurring at the sender’s
side: (i) Multiplication and division operation required for
computing congestion window (cwnd) takes up the majority
of the processing resources in FPGA. (ii) The mechanism
used to keep track of packet state (e.g. which packets has been
ACKed and transmitted, or not, or retransmitted, and so on.)



occupies a large portion of on-board memory of the FPGA
device. Moreover, memory allocated for multiplication and
division operations further increases the memory cost. The
details on these observations are discussed in Section I1.

Therefore, the question is: How to design a CC scheme
that is compatible with hardware design such as FPGA? To
address this question, we first must consider a clean-slate
solution that can be fully offloaded to FPGA. This is because
in order for a solution to be deployment ready, first, the
solution must be compatible with legacy commodity switches
that are commonly used in cloud (or datacenter network).
Second, datacenter network is typically made up of tens of
thousands of switches and servers [11]. For these reasons,
from network management and maintenance perspective, the
solution must require minimal network reconfiguration.
Driven by these two practical motivations, we consider delay-
based scheme. Moreover, the scheme must be able to achieve
low CPU, memory, and power consumption. At last, the
design must be able to achieve basic CC mechanisms, such
as end-to-end reliability, congestion window adaptation, and
sO on.

In this paper, we present a novel transport protocol,
STRIDE (Single-TRIp-time-based reliable Data transport
protocol for the rEconfigurable cloud) that is specifically
designed for reconfigurable cloud. STRIDE is a lightweight
reliable data transport protocol for inter-FPGA
communication that imposes lower overhead on resource
utilization and bandwidth. This is achieved by replacing the
computationally heavy multiplication and division operation
with a series of the simpler one-clock-cycle bit-shifting
operation to compute and adjust transmission rate. This
allows the entire computation to be done in FPGA, resulting
in quicker responses to congestion.

STRIDE also takes advantage of the functionalities
available in FPGA, such as packet timestamping in hardware
and the high FPGA clock precision, which enables STRIDE
to accurately measure end-to-end delay or single trip time
(STT) delay between two end-hosts. Thus, utilizing STT as a
congestion signal allows STRIDE to have better control on
the transmission rate, which results in lower packet drops.
Importantly, this makes STRIDE a plug-and-play solution
without requiring additional reconfiguration in network.
Finally, STRIDE also provides basic functionalities for end-
to-end reliability, such as packet ACKing, retransmission,
three way handshaking, and connection termination.

To evaluate STRIDE’s performance, we build packet
processing modules and implement an actual prototype using
FPGA Accelerated Switches platform [15,16], which we then
deploy in our testbed. In our testbed experiments, we
compare STRIDE to the state of the art (TOE) and
demonstrate that STRIDE improves flow completion time
(FCT), or time required to complete a flow, by at least 2.2X.
The detailed description of system implementation and
experimental results are provided in the evaluation section.
Additionally, STRIDE also reduces computational and
memory cost by up to 49% and 38% respectively compared
to TOE. In large scale scenario, we demonstrate STRIDE
outperforms DCTCP and TCP-Vegas through OMNET
simulator [28] by up to 1.8X and 2.3X on average and 99"
percentile respectively.

II. RELATED WORK

One of the early developments on TCP offloading
technology for high-speed network is TCP offload engine
(TOE). It allows hardware to offload the entire TCP/IP stack
network controller, reducing the processing overhead in the
CPU and server I/O. Such overheads include connection
establishment and termination, TCP checksum, and sliding
window for congestion control and reliability [6], which
speeds up the processing speed. However, at implementation
level, CPU is still required for TCP connection management
function to process received and sent packets. For example,
every socket created in application’s user space corresponds
to a socket structure in kernel space. Thus, every system call
eventually has to invoke a function in the kernel. For these
reasons, offloading TCP protocol from Linux system core
function to a dedicated processing unit (hardware) can be very
challenging and complex. This is because TCP connection
management depends on functionalities residing in kernel
space. There are a number of recent FPGA projects that focus
on physical and data link layer [17], but they do not consider
transport layer functions such as congestion control scheme
due to implementation challenges described above.

LTL provides congestion management to avoid early
packet drops [3] which incorporates ECN [18,24] based DC-
QCN scheme [18] and Priority Flow Control (PFC) [10] in
their implementation of inter-FPGA network protocol.
However, ECN and PFC based schemes require switch
support. Additionally, even with switches that support ECN
and PFC, the scheme requires network operator to configure
the switches in datacenter, which may not be efficient as a
typical datacenter is made up of thousands of switches.
Additionally, the utilization of PFC potentially may lead to
deadlock caused by PDF pause frame [26] stalling the network
from delivering data. Similarly, NDP [30] is another
reconfigurable cloud solution that requires switch support (P4
Switches).

III. BACKGROUND

Despite benefits that FPGA offers, we discover challenges
of implementing a complete offloading congestion control
scheme to FPGA. In our early designs, we first attempted to
implement TCP and TIMELY in FPGA, and then performed
simple experiments in our testbed with two servers connected
through two serial switches. Through our endeavors, we learn
that it is not only difficult to fully offload a protocol to FPGA,
our experiments also show that the system performs poorly.
The lessons we learned from implementing a fully offloaded
FPGA presented in this section provides the insights to the
design of our CC scheme for reliable end-to-end inter-FPGA
data transfer.

Lesson 1: Computational cost. Offloading the entire TCP
stack to FPGA is computationally expensive, caused by the
complex mechanism in calculating congestion window size in
hardware. Generally, the high computation cost comes from
multiplication and division operations. In multiplication
operation, for every single partial product generated by
multiplying two bits, it requires multiple rounds of bits
shifting and addition operation. Moreover, since division
involves several multiplication operations, the computation
cost becomes even more expensive. This is because that



computation involves multiplying several factors by the
divisor to obtain approximately 1, followed by multiplying the
outcome from previous multiplication operations by the
dividend. One of the main calculations in any CC scheme is
the updates of the transmission rate which relies mainly on
multiplications and divisions. Hence, it becomes
computationally expensive to update the rate, especially for a
scheme that requires many multiplication and division
operations like TIMELY does. That cost increases
proportionally with the number of flows sharing the NIC.

Lesson 2: Memory cost. Typically, a CC scheme needs to
keep track of some per-packet state such as SEQ/ACK
numbers, inflight packets, packets that are ready to be
transmitted, packets that are not ready for transmission, .., etc.;
these information needs to be stored in the on-board memory
inside the FPGA card. Moreover, the scheme also needs to
allocate additional memory space to keep track of the partial
product from multiplication and division operations. The
amount of memory used may result in exhausting the memory.

Therefore, based on the above lessons, we ought to rethink
how congestion control scheme should be re-designed to
achieve the objective of complete offloading on the FPGA.

IV. STRIDE OVERALL DESIGN

In this section, we provide a description of STRIDE
framework design, discuss STT, and our CC scheme.
A. STRIDE Framework

STRIDE is a lightweight transport protocol that provides
full-duplex and reliable delivery. We illustrate an overview
of STRIDE’s workflow Figure 1.

Packet format. STRIDE builds on top of UDP which

provides the basic transport layer multiplexing function.
STRIDE packet header (Figure 2) is encapsulated in UDP
packet, allowing STRIDE to be more compatible with legacy
system. Additionally, since UDP is a lightweight protocol, it
keeps the packet processing cost low. Moreover, utilizing
UDP also reduces the communication complexity caused by
middle-box protocols [26] (e.g. NAT, Firewall, etc.).
Establishing and terminating a connection. To establish a
connection between two hosts, STRIDE performs a three-way
handshaking for connection establishment and connection
tear-down functions similar to the ones of TCP.
Congestion Control. In our design, we first address the
challenges described in section III. Then, we consider more
practical and deployment aspects of the scheme, such as
system configuration and scalability issues. We also consider
the limitations of RTT delay measurements [13, 14]. To
address the former, we design STRIDE as a pluggable system
which requires minimal switch features. This differentiates
STRIDE from ECN-based solutions (e.g. DCTCP [19],
DCQCN [9], and ECN-RED [12].) which require configuring
switches and may not be scalable in a large-scale datacenter
environments. To address the latter limitation, STRIDE
leverages hardware technology in FPGA such as
timestamping to measure accurately the one-way end-to-end
delay. This allows STRIDE to perform a more fine-grained
control loop for datacenter congestion control, where a flow
in datacenter only lasts for microseconds [13,19]. For this
reason, STRIDE utilizes STT to detect congestion instead of
RTT.

sender receiver

Establish | STTi= to-to 3
connection

I~ Handshake

7
Uccessful
onnceto

STTy=t11-t12 {( i L Data
K D | Transmission

............................. >
JE R — i Finish
FIN packet

(a) Workflow (b)Interactive process

Fig. 1: Overview of STRIDE

bit 8 32 32 1 1 1 1

| STT | seq | ack-seq |SYN|FIN |ACK|NACK|

| STRIDE

Header 'UDP Payload |

4

UDP Payload |

<= UDP Header |
Fig. 2: STRIDE packet structure

B. Single Trip Time (STT) Measurements

Clock drift problem in NICs makes measuring STT very
challenging. One possible solution is to synchronize on-board
clock using Precision Time Protocol (PTP) [20]. This scheme
can synchronize system clock down to sub-microseconds
granularity. However, PTP is not scalable in a large-scale
environments. As reported in [20], PTP requires all end-hosts
and switches to be in the same multicast group. However, for
scalability purposes, today’s networks are divided into
multiple smaller clusters for more effective and efficient
large-scale network management. Additionally, PTP relies on
centralized controller to keep track of the “right” clock.
Nevertheless, the controller can become overloaded
considering the scale and size of modern datacenter networks.

In contrast, FPGAs provides much more precise clock
cycles and have lower time dilation among multiple cards
[21], which makes this technology a more suitable solution for
large-scale networks. To verify its clock precision, we
perform testbed experiments with two servers connected by
two serial 10GB switches. We generate a single flow traffic
using iperf. Then, we measure the time difference At between
two observed STTs at time t; and ¢;,, at both the sender and
receiver, where, At = STT(t + 1) — STT(t). Next, we observe
in multiple experiments running over 5 minutes interval that
consistently the time difference is At < 1 nanoseconds for
every 1 millisecond interval. The error At is sufficiently small
for an accurate STT approximation in datacenter, where a flow
typically completes in microseconds [13]. The precision
comes from FPGA’s crystal error that is within 0.0025%,
which results in less than 1 nanosecond error margin. In other
words, FPGA allows STRIDE to obtain STT at 10
nanoseconds accuracy. Moreover, this precision also allows
multiple FPGA cards to be programmed to achieve the same
cycle, so they can operate at the same frequency [22] resulting
in a significantly more precise clock synchronization
compared to NIC.




To measure STT, STRIDE uses the timestamping function
available in FPGA by programming. We have STT(¢t) =
tRX — 7% for tf* > tT* >0, where thy and thy denote
timestamp at the sender (TX) and receiver (RX) on packet i.
Here, STT(t) can be interpreted as an estimation delay
between TX and RX at time t. Additionally, STT(t) is
computed at RX upon receiving packet from TX, which
carries t/* in its STRIDE header.

C. Congestion Control

We describe our congestion control mechanism for inter-
FPGA without in-network support. STRIDE is a rate-based
scheme, whose congestion avoidance follows gradient-based
algorithm [13]. In other words, rate is adjusted according to
the derivative of the queueing delay with respect to time. This
is realized by accurately measuring the STT on a per-packet
basis. Hence, STRIDE can react to queue buildup without
waiting for a standing queue to form, eventually allowing
STRIDE to achieve low latency.

Algorithm 1 provides the description of our congestion
control scheme. Generally, STRIDE maintains rate r(t) per
connection at time t and updates its rate every RTT by
calculating delay gradient using two consecutive STT
samples collected at the receiver. In our design, we employ
two thresholds Tj,,, and Ty;g, to detect and respond when a
link is underutilized or experiencing overly high latency
respectively. Ty,,, and Tp;g4p, are related to min-STT, which is
the transmission time without congestion. However, when
Tiow <T(t) < Tpyyp, Tate r(t +1) is decided by normalized
gradient using the concept proposed in [15]. If the normalized
gradient < 0, then it means there is room for a higher rate and
r(t + 1) should be increased (line 20). Otherwise, r(t + 1)
is decreased (line 22).

D. Analysis

Low computational cost scheme. To achieve a lower
computational cost, STRIDE uses bits shifting to calculate its
transmission rate. To compute line 4, a € {%} which allows
the computation of r(t + 1) to be done by utilizing bit shifting
together with addition and subtraction operations. To update
transmission rate (line 10), (¢t + 1) is adjusted with the

following equation:
K
1 1
r(t+1) = r(t)zE = (1 - ﬁ) 1)
=1

where k is the number of shifts required. In our experiment,
we have k = 3. In practice, k can be relatively small because
it has diminishing returns property as k — oo. This means the
impact of k diminishes as k grows larger. Similarly, to
compute normalized gradient in eq. (2), we use subtraction
operations and count the number of loops until the reminder

is less than STT,,;,, = min {S}, where S is a set of observed
STTs (line 13 to18).

ASTT
STTin

normalized_gradient =

(2)

Algorithm 1: STRIDE Congestion Control
STThew = STTyq = ASTT =0  // Initialization
STTpin = min{S} // S is a set of observed STTs
Procedure STRIDE (STT,.,, )
ASTT =(1— a). ASTT + o (STTpeyw — STTy14)
STTo1q = STThew
if STThew < Tiow
rater =r + f // increment with step size § > 0
return
9. i STThew = Thign
10. Solve eq. (1) with k =3
11. return

Po N kW=

12. if Thigh > neWge > TlOW
13. A= ASTT

14. normalized _gradient =0

15. while A > STT,,;, //solving eq. (2)

16. normalized_gradient++

17. A=A — STTpn

18. end while

19. if normalizedg, qgient < 0

20. r=r+w.pf // increase rate with weighted 8
21. if normalized_gradient > 0

22. r =r.(1 —normalized_gradient)

23. return

24. end procedure

track of packet state (e.g. packet that has been ACKed, ready
for transmission, needs to be transmitted, .., etc.), STRIDE
allocates 64KB per packet in DDR SDRM at the sender.
Tracking packets at different states is accomplished by
maintaining a counter of the number of packets at different
stages. This approach requires relatively smaller memory
space compared to storing the entire packets. Memory space
allocated to packets is released upon receiving its ACK.
ACK generation is performed by the receiver and follows the
same procedure of TCP acknowledgement scheme.

STRIDE Reliability. When the receiver detects a missing
packet, it notifies the sender with Negative ACK along with
the sequence number of the missing packet. The sender then
resends the missing packet and the subsequent packets upon
receiving NACK. This idea is inspired by the classic GO-
back-N protocol [23,25]. However, the advantage of a single
NACK packet over TCP’s duplicate packets (typically 3
duplicate packets) is that a single NACK packet reduces
computational cost and memory space for processing packets
in FPGA. Additionally, single notification also speeds up
retransmission process such that the sender can immediately
resend the missing packet as soon as NACK is received,
instead of waiting for multiple notifications like in TCP.
Moreover, STRIDE also keeps a timer to detect packet drop.
When a packet is dropped, STRIDE resends the packet that
has not been ACKed.



SRAM

DRAM

Rate Calculation

Arbitration Send

— Parser

Timestamp

Fig. 3: STRIDE packet processing module.

V. IMPLEMENTATION

To evaluate STRIDE, we implement our solution in an
open source FPGA Accelerated SwiTches (FAST) platform
[15, 16], which provides multiple modular interfaces for
FPGA developer. The FPGA board (iRouter board depicted
in Figure 4) is equipped with Arria SAGTMC3D3F3115 and
a flash memory to store file configuration of FPGA. The
platform utilizes multi-core CPUs to allow software to
communicate with FPGA through the PCle bus. The line-
card board provides eight 1-GigE Ethernet ports and two 10-
GigE Ethernet ports.

Hardware module design. Here, we present the hardware
design and implementation of STRIDE modules in FPGA.
Figure 3 illustrates the steps required to process the packets.
When a packet arrives at the FPGA (at the sender or receiver),
the packet is placed in SRAM to be processed by a Parser
module, which parses different headers (e.g. STRIDE, UDP,
IP, and MAC header) in the packet. After parsing, Parser
module passes the information in STRIDE header to
Arbitration (AR) module to determine packet type (e.g. ACK,
NACK, FIN, or SYN packet) which processes the packet
according to its type. For instance, when the AR module
identifies NACK bit is set to 1, STRIDE immediately
retransmits the missing packet according to the sequence
number stored in STRIDE header and the subsequent packets
in DRAM.

AR module also counts the number of bits of an arriving
packet and calls the timestamping module to timestamp the
packet when the last segment of this packet arrived. After
that, AR module creates STRIDE header and insert
timestamping value into the header. Moreover, AR module
fetches transmission rate from Rate Calculation (RC) module
and relays it to the Send module. RC module employs
algorithm 1 to determine its transmission rate. At the Send
module, outgoing packets are stored in the DRAM and served
in FIFO order onto the outgoing link.

In timestamping module, the timestamp value is inserted
into the packet by assigning the timestamps bits in STT field
inits STRIDE header. FPGA performs the same timestamping
mechanism at both the sender and receiver. In the sender,
FPGA processes packet coming from applications, whereas in
the receiver, FPGA processes packets coming from network.

VI. EVALUATION
In this section, we provide evaluation of STRIDE through
experiments in our testbed with 10GB port switches and large
scale simulation involving 250 nodes.

A. Tested Experiment

Experiment setups. As depicted in Figure 4, Our network
topology consists of two servers, two iRouters, two switches,
and IXIA emulator to create background traffic. The two
iRouters are used as the sender and receiver; and the two
servers are used for initiating transport and gathering
information from iRouters for analysis. We consider fixed
rate, random rate, and linear increased rate to emulate
background traffic in datacenter network using Spirent n12
emulators. Inspired by [13], STRIDE ACKs every 64 kb
interval if there is no packet dropped, instead of ACK per
packet (1500 byte). Through our testbed experiments, we
observe that 64 kb provides STRIDE with the quickest time
to adjust its transmission rate based on observed STT (Figure
5). Here, we refer 64 kB interval as data segment size in this
paper. By doing so, STRIDE also cuts down the
communication overhead for ACK.

Testbed experiments results. In our evaluation, STRIDE is
compared to TOE, which is the state of the art FPGA based
solution. Our experiments demonstrated that compared to
TOE, as shown in Figure 6, STRIDE achieves significantly
faster FCT across flow sizes (e.g. <10kb, 10kb-128kb,
128kb-256kb, 256kb-2048kb, 2048kb-10240kb), which
translates to 2.2x improvement on average. Our improvement
factor is the ratio of compared FCTs over STRIDE’s FCT.
These experiments demonstrate the benefits of fully offload
CC scheme into FPGA, such that the processing speed is
faster.

We conduct further investigation to understand how and
why STRIDE obtains better performance. We first observe
that STRIDE accomplishes lower number of packets dropped
compared to TOE across different flow size, as depicted in
Figure 7. By utilizing gradient based scheme, STRIDE up
to3x less in the number of packets dropped compared to TOE,
resulting in significantly lower packet retransmission caused
by packet dropped. This way, STRIDE achieves lower
average FCT.

Since STRIDE utilizes STT to determine its transmission
rate, we investigate whether FPGA is also facing clock drift
problem. To evaluate clock drift, we compare all STTs from
a single flow to the observed first STT from the same flow.
then, we measure how much the clock deviates since the
connection is established. To ensure the measurement is not
distorted by queuing delay in switches, we control the flow’s
transmission rate such that buffer in switches is empty. The
performance matrix used in our evaluation is the ratio of each
different STT over the first observed STT in nanoseconds
(ns) scale. When the ratio is 1, both STT at time ¢t and first
observed STT is equal, such that STT(¢t) = STT(1) for t > 1,
which means FPGA does not experience clock drift problem.
Otherwise, the clock deviates. As illustrated in figure 8.a,
FPGA attains significantly small clock deviation since the
establishment of the connection, where the ratio difference is
at most 0.009. In other words, FPGA maintains very close
clock approximation to the actual clock.



-
)] ) I/ FPGATraffic  ======- > =
' Background Traffic =~ ======- » |

7 PC1 [N =
~ 4

iRouterl N Switchl Switch2 /

Background Traffic
(IXIA Network Emulator)

Fig. 4: Experiment topology

32KB m 64KB m 128KB m 256KB

13
1.25
1.2
1.15
128 256

Fig. 5. Avg. time (per Byte) varying with segment size

Avg. Time (ns) / Byte

2048 10240 102400
Block Size / kb

To further validate the FPGA clock precision, we compare
STT(t) = STT(t + 1) for t > 0 and show that the ratio of
STT(t) over STT(t + 1) is very close to 1 (Figure 8.b). This
also demonstrates that clock deviation between subsequent
STTs is also significantly small. For these reasons, by
keeping clock deviation minimal, FPGA provides much more
precise STT approximation, allowing STRIDE to be more
sensitive to queue buildup, resulting in quicker reaction to
congestion without waiting for packet dropped. Hence,
STRIDE achieves a lower average FCT compared to TOE.

Next, we investigate how much resources are required in
FPGA to support STRIDE. Here, we measure the number of
sets of arithmetic and logical operations in ALU, the amount
of space required in memory (SRAM and DRAM), and the
amount of block memory generator (BRAM) used in FPGA.
In this experiment, we generate Iperftraffic in our testbed. As
shown in table 1, STRIDE has better resource usage
compared to TOE in all categories. This is because STRIDE
achieves a lower processing overhead in FPGA by employing
bits shifting technique and limiting the computation to just
addition and subtraction operations (section 1V). Thus, in
achieving lower processing overhead, STRIDE has less
information to store in the memory which results in lower
space overhead. Moreover, by attaining a lower overhead in
ALU and memory, STRIDE requires lower registration
overhead in FPGA. Therefore, STRIDE achieves lower FCT.

With a lower overhead, STRIDE requires lower power
consumption, leading to better energy saving, especially in
large scale datacenter setting with hundred thousands of
servers.

mSTRIDE mTOE 3

0 | I I I

N 128KB  512KB  1024KB  10MB
Flow Size

g
~ n

Retransmission (KB)
i
wn

& o
4 N

Block Size / kb

S
%, I
°
I
o
& e

Fig. 7. Ratio Packet lost
(TOE/STRIDE)

Fig. 6: Avg. time (per KiloByte)
varying with block size

1.05 1.05

Ratio

0.95 0.95

0.9 0.9
12345678 9101112131415
t-th Observation

Fig. 8.a. FPGA Clock Drift

12345678 9101112131415
i-th Observation

Fig. 8.b. FPGA Clock Drift

ALUs Mem. Alloc. BRAM
TOE 12468 2.294MB 392
STRIDE 6339 1.4264MB 191
Improvement 49.15% 37.82% 36.75%
Table 1. Resource usage on Arria V.
Category I I 111 vV
Flow Size | <10b | 10b-100kb | 100b-1MB | >1MB

Table 2. Flow size categories.

B. Large Scale Simulation Experiment

Simulation setting: We employ OMNet++ simulator [28] to
evaluate STRIDE at packet level and in larger scale scenario
(256 hosts in FatTree based topology [27]). Here, STRIDE is
compared to delay (TCP-Vegas [12]) and ECN (DCTCP
[19]) based congestion control schemes with different traffic
load described in table 2. The primary performance metric for
comparison is the average FCT, and our performance factor
is described as follows.

Compared FCTs

improvement = —STRIDE’S FCTs'

If the improvement is greater (smaller) than one, STRIDE is
faster (slower).

Simulation results. Figure 9.a demonstrates that, on average,
STRIDE achieves faster FCT across categories by up to 1.8x
and 1.4x compared to TCP-Vegas and DCTCP respectively.
Additionally, the outcome from average performance is also
reflected in the 99" percentile, as illustrated in Figure 9.b.



B TCP-Vegas

m TCP-Vegas
1.8
DCTCP
DCTCP
§1s 2
g 2
514 3
s 215
~ 12 E I
1
1
I n v
| 1 n Y
Categories Categories

Fig.9.a Avg. FCT Fig.9.b 99th Percentile

The key observation on STRIDE’s improvement over
TCP-Vegas is that TCP-Vegas uses RTT to measure
congestion. However, RTT is known for its imprecision due
to its distorted reverse delay. For this reason, without precise
measurement queue build up in switches, TCP-Vegas may
react slower and less accurate in responding to congestion. In
contrast, with more precise measurement, STRIDE is more
sensitive to queue build up and can react quicker to
congestion leading to lower packet drop, as demonstrated in
our testbed experiments.

For DCTCP, it relies on fraction of packets marked by
ECN to detect the congestion level. However, DCTCP
requires one RTT interval to observe fraction of marked
packet [19]. This also means DCTCP requires one RTT to
adjust its transmission rate to achieve the desired rate. In
comparison, STRIDE is able to adjust transmission rate to the
desired rate as soon as it receives ACK packet. In other
words, DCTCP reacts slower to congestion compared to
STRIDE, which also results in slower FCTs for elephant
flows in DCTCP. Moreover, as illustrated in Figure 9, smaller
flows benefit from both DCTCP and STRIDE. This is
because both schemes share similar objectives of keeping
queue in switch buffer low, resulting in faster FCT for small
(mice) flows.

VII. CONCLUSION

Although FPGA looks as a promising solution to improve
system performance, full adoption of this technology is
limited by high computational cost and space requirement to
fully offload CC into FPGA. To resolve this problem, we
propose a CC that utilizes lower computation resource and
memory space. We also show the benefits and strengths of
STRIDE through testbed and simulation experiments.

Acknowledgement. This research was supported in part by a
research grant from Chinese National Prog. for Key Tech. of
SDN, Supporting Resource Elasticity Scheduling, and
Equipment Dev. (863 Programs) (No.2015AA016103), and
National Natural Sci. Foundation: Synergy Research on CPU
/ FPGA Heterogeneous Network Processing System for
Complex Network Applications (No0.61702538). We thank
Dr. Weichao Li for the discussion.

(1]

[3]
(4]
(3]
(6]
(7]
(8]
(9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]
[17]

[18]

[19]
[20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]

[28]
[29]

[30]

Reference

M. Malik and H. Homayoun, “Big data on low power cores are low
power embedded processors a good fit for the big data workloads,”
International Conference on Computer Design, 2015.

M. Malik, et. al., “System and architecture level characterization of big
data applications on big and little core server architectures,” IEEE Int.
Conference on Big Data. IEEE BigData, 2015.

A. Caulfield, et. al., “A Cloud-Scale Acceleration Architecture”.
Annual IEEE/ACM Int. symp. on Microarchitecture (MICRO), 2016.
Jian Ouyang, et. al.. “SDA: Software-Defined Accelerator for Large
Scale DNN Systems. IEEE Hot Chips 26 Symposium (HCS), 2014.
D. Sidler, et al., “Scalable 10Gbps TCP/IP Stack Architecture for
Reconfigurable Hardware,” in FCCM, 2015.

“TCP Offload Enginer”, https://www.chelsio.com/nic/tcp-oftload-
engine/

D. Sidler, et al., “Scalable 10Gbps TCP/IP Stack Architecture for
Reconfigurable Hardware,” in FCCM, 15.

D. Sidler, et. al.. Low-Latency TCP/IP Stack for Data Center
Applications. Int. Conf. on Field Prog.Logic and App., 2016.

Y. Zhu, et. al. Congestion Control for Large-Scale RDMA
Deployments. In SIGCOMM, 2015.

“Priority Flow Control”, https://1.ieee802.org/dcb/802-1qbb/

A. Roy, et al, “Inside the Social Network’s (Datacenter) Network,” in
ACM SIGCOMM 2015.

J.Kurosa and k. Ross, “Computer Networking: A Top-Down
Approach”, Pearson Education, 2017

R. Mittal, et. al.. TIMELY: RTT-based Congestion Control for the
Datacenter. In SIGCOMM, 2015.

C. Lee, et. al. “DX: Latency-Based Congestion Control for
Datacenters”. In ACM Trans. On Networking, 2016.

FAST project. https://github.com/FAST-Switch/fast.

FAST Official website: http://www.fastswitch.org/

S. Jun, et. al.. “A Transport-Layer Network for Distributed FPGA
Platforms”. Int. Conf. on Field Prog.Logic and App., 2015.

Y. Zhu et. al.. “ECN or Delay: Lessons Learnt from Analysis of
DCQCN and TIMELY”. CoNEXT, 2016.

M. Alizadeh, et. al.,“Data center TCP (DCTCP),” in SIGCOMM 2010.
P. Estrela, et. al., Challenges Deplyoing PTPv2 in a Global Financial
Company, in ISPCS, 2012.

J. Casper and K. Olukotun, “Hardware acceleration of database
operations,” ACM/SIGDA Int. Symp. on FPGA, 2014.

A. Rodionov and J. Rose, “Synchronization Constraints for
Interconnect Synthesis”, ACM/SIGDA Int. Symp. on FPGA, 2017.

C. Guo, et. al.. “RDMA over Commodity Ethernet at Scale”. In
SIGCOMM, 2016.

W. Bai, et. al.. Enabling ECN in Multi-Service Multi-Queue Data
Centers. In NSDI, 2016.

H. Saleh, et. al.. “Packet communication within a Go-Back-N ARQ
system using Simulink” Crtl Eng. & Information Tech. , 2016.

A. LangLey, et. al., “The QUIC Transport Protocol: Design and
Internet-Scale Deplyoment”, ACM SIGCOMM, 2017.

M. Al-Fares. Et. al., “A Scalable, Commodity Data Center Network
Architecture”, ACM SIGCOMM, 2008.

“OMNET++*, https://www.omnetpp.org/

D. Firestone, et. el. “Azure Accelrated Networking: SmartNICs in the
Public Cloud”, USENIX NSDI, 2018.

M. Handley, et. al,”Re-architecting Datacenter Networks and Stacks
for Low Latency and High Performance”, ACM SIGCOMM, 2017.



