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Abstract— In datacenter networks, many data transfers 

usually constitute semantically a coflow group. Typically, a 

coflow is considered completed when all transfers in a coflow 

are completed, and hence the data and information are useful to 

applications. That is why, applications’ performance are 

optimized whenever the completion time at the level of a coflow 

rather than the individual flows is minimized. The current 

popular coflow scheduling algorithms are centralized based 

approach, but they incur high overhead cost. The decentralized 

approach in the Many-to-Many scenario also incurs high 

communication overhead cost caused due to the communication 

among the local controllers. Therefore, in this paper, we present 

a coflow scheduling mechanism that aims to minimize the coflow 

completion time for coflow with Many-to-Many communication 

pattern. And by product the communication overhead costs are 

minimized. Using a testbed implementation in our mini 

datacenter and large-scale network simulation, we demonstrate 

that our scheduling scheme improve the coflow completion time 

on average by up to 1.8× compared to the baseline in both cases. 

These are achieved while preserving compatibility with existing 

commodity switches and network protocols. 

I. INTRODUCTION  

Network traffic in modern datacenters is often a result of 

the communication requirements at the application level. 

Recently, the term coflow provided a meaningful semantic 

that translates application requirements to matrices which can 

be understood at network level (e.g., the data plane layer). In 

networking context, a coflow consists of a set of concurrently 

active flows set to complete a specific data transfer started by 

the application. Typically, the completion of data transfer of 

all flows within the same coflow signifies the completion of 

the communication stage for the application. Applications 

strive to achieve faster completion of their communication 

tasks which greatly depends on minimizing coflow’s 

completion time (CCT). However, this dependency may lead 

to inter coflow bottleneck, which can severely degrade the 

performance at the application level.  

To address the dependency problems, many recent 

proposals puts this problem into the form of CCT 

minimization. The popular approaches are usually designed in 

centralized manner [4,5,6,7,8,9] where a single centralized 

scheduler is responsible for scheduling the coflows of the 

entire network. However, a high overhead cost is required for 

maintaining such a centralized system. Alternatively, there are 

various decentralized  state of the art solutions. For instance, 

Barat [3] requires switch modifications where the task of 

scheduling coflows is performed at switches. However, lacks 

access to coflow level information because switches only have 

access to information at flow level, which leads to less optimal 

outcome. In addition, because this decentralized solution 

requires elaborate software modifications in the switches, it is 

harder to deploy. Stream [27] does not require switch 

modification but requires local controllers of the same coflow 

to exchange information, which may result in communication 

overhead cost. Moreover, decentralized schemes also 

commonly suffer from sub-optimal outcome because of the 

lack of a complete picture of coflow states and the inability to 

achieve global coordination between the local controllers. In 

this paper we present Creek: a decentralized inter coflow 

scheduler for coflows with Many-to-Many communication 

patterns without requiring hard modification and imposes 

minimal communication overhead cost. Creek is designed to 

resolve the challenges in decentralized scheduling systems, 

while at the same time possessing key advantages of 

centralized system. Creek is capable of acquiring a more 

complete picture of coflow states and accomplishes an 

approximate global coordination, achieves near optimal 

performance, without the overhead cost of centralized 

solutions.  

The key to the solution depends on understanding the 

communication pattern which provides insights to achieve the 

objective of minimizing CCTs effectively. One-to-Many is a 

pattern where a single node receives data transfer from many 

senders and forms a single coflow [19,22,23,24]. Many-to-

Many is a pattern where many receivers receives data transfer 

from many senders [18,20]. In other words, that is a single 

Many-to-Many coflow consists of multiple Many-to-One 

coflows, which is the focus of this paper. 

In this paper, we present, Creek, our inter coflow 

scheduler for coflow with Many-to-Many communication 

pattern which acquires the necessary information on coflows 

at receiver’s end. The scheduling policy is enforced and 

communicated by leveraging existing network components 

(e.g., functionalities that are commonly available in 

commodity switches) and the mechanics of existing transport 

protocol (e.g., TCP/IP). For inter coflows scheduling decision, 

Creek employs Conditional Shortest Job First (C-SJF), where 

coflow is scheduled based on the condition of coflow state in 

SJF fashion. To reduce the communication overhead required 

for the receivers of a coflow to communicate with each other, 

Creek resorts the information management to a third party, 

which can be a designated node that store coflow information.  

In our performance analysis, we evaluate our solution 

through actual testbed experiments and large scale simulation 

experiments.  In the testbed experiments, we implement Creek 

and deploy the prototype in a mini datacenter testbed. This 

also shows that the solution is production deployments 
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friendly. Moreover, the experiments demonstrate that Creek 

outperforms the baseline by 1.8×. In the large scale 

simulation, we evaluate Creek performance by replaying an 

actual production trace of coflow traffic workload from a 3000 

servers (150 racks) in Facebook production datacenter [4].  

Specifically, the evaluation is performed by using widely 

accepted traces from Facebook along with two benchmarks: 

TPC-DS [5] query and Facebook’s Tao structure [28]. In our 

evaluation, Creek superseeds both Baraat and the traditional 

per-flow fair sharing scheme by 1.85× on average, and 

achieves comparable performance with the centralized 

scheme. As for mice coflow CCT, Creek is up to 28× better 

than per flow fair sharing and up to 18× better than Baraat. 

Here, Creek also achieves similar outcome with centralized 

system. At last, finding in [4] shows that priority based 

scheme follows diminishing return behavior, and in this paper 

we provide an insight to this behavior through theoretical and 

(testbed and simulation) experiment results.  

Our contributions can be summarized as follows: 

1. Propose a coflow scheduling scheme for coflows with 

Many-to-Many communication patterns, which minimizes 

the communication overhead between receivers . 

2. Deploy our solution in our mini datacenter. Evaluate 

solution in large-scale setting.  

This paper is organized as follows. We present previous 

related work in section II and the system model in section III. 

Then, we describe Creek in section IV. Simulation results are 

presented in section V, then concluding remarks in section VI.  

II. RELATED WORK  

One of the early works on this theme is Orchestra [6], 

where the semantic among flows is accounted in the design of 

the flow transfers optimization in datacenter. Sincronia [2], 

Varys [4], Aalo [5], and NC-DRF [21] by prioritizing 

smallest-total-size-first based approach in their scheduling 

mechanisms which improved the performance in [6]. RAPIER 

[7] extends [4] by incorporating routing algorithms into the 

scheduling scheme.  

Likewise, CORA [8] also extends the problem in [4] by 

integrating the resources allocation solution into the flow 

scheduling scheme. In later development, the authors of [9] 

extended the problem in [4] and have taken into account the 

importance level of different coflows. Then they reformulated 

the problem into a weighted CCTs minimization problem. The 

aforementioned schemes falls into the centralized scheduling 

category that typically provide near optimal scheduling. 

However, these approaches are critized for incurring very high 

cost of centralized system management and are generally hard 

to realize because they require significant switch 

modifications and/or a complex control plane.  

On the other hand, as an alternative, there is the 

decentralized approach. In this approach, Baraat [3] 

dominates as the state-of-the-art decentralized coflow 

scheduling system. Baraat relies on various heuristics which 

is based on a multiplexed First-In First-Out (FIFO) principles.  

In Baraat, whenever large coflows are observed in the 

network, Baraat improves the CCT by processing mice flows 

in the background. Otherwise, mice flows are processed 

according to the trivial FIFO scheduling. Even though, Baraat 

proves to be effective, it has a few drawbacks. First, its  

 

Fig. 1. Data Shuffle between mappers and reduces in Hadoop [18]. 

Flow size The length of a flow 

Coflow size The sums of all flows in a coflow in bytes. 

Coflow width The number of parallel flows in a coflow. 

Coflow length Largest or longest flow in coflow in bytes. 

Table 1. Terminology 

 
Fig. 2. CDF plot:  a) coflow size , b) length, and c) width from Facebook 

datacenter [4], and d) coflow size in Bing, Microsoft datacenter [3].   

 
Fig. 3. FatTree network topology [30].  

scheduling decisions are made locally at switches which limits 

the scheduler access to only flow level information. So, the 

scheduler has an incomplete information about coflow states 

and results in sub-optimal performance. Second, Baraat also 

requires modifications to switches’ source code which makes 

it not deployment friendly. 

Stream  [27] is another recently proposed decentralized 

scheduler which opportunistically choose the receiver in 

Many-to-One and Many-to-Many communication patterns. 

However, since Stream requires its receivers of a same coflow 

to communicate with each other for coordination, Stream has 

high overhead communication cost. In our work, we adopt 

different approach where we solve the general coflow 

scheduling problem in decentralized manner for Many-to-

Many patterns, without requiring hardware modification with  

minimal communication overhead.  

III. SYSTEM MODEL  

In this section, we discuss the coflow abstraction,  

describe coflows in production, and the network model used 

in the study.  

a) b) c) d) 



 

 

Coflow Abstraction. A coflow is generally characterized by 

the number of its concurrent flows (width), its total 

transferred bytes (size), and its longest flow in bytes (length). 

These characteristics determine the state of coflow during its 

lifetime. For example, a coflow state is known by tracking 

the number of completed flows of the coflow, the number of 

bytes transferred/received of the coflow, etc. 

Coflows in Production. In this work [4], the authors observe 

that coflow sizes follow a heavy trailed distribution. Even 

though, in Facebook datacenter, large coflows of at least 10 

Gb make 8% and ones of at least 1 Gb make 15% of all 

coflows, they are responsible for 98% (99.6%) of the traffic, 

respectively. This means that most coflows are small in the 

size and contribute the least bytes to the network as shown in 

Figures 2a, 2b, and 2c. This confirms to the findings in [3, 6] 

from Microsoft’s datacenter, as shown in Figure 3d, which 

shows that coflow sizes abide to the heavy tailed distribution. 

Another work [14] which studied data-mining application and 

found it also has a very heavy tailed distribution where 95% 

of all data bytes come from flows larger than 35MB which  

make for only 3.6% of all flows. This again confirms that data 

mining application generates more small sized flows, but the 

traffic in the network comes from few large sized flows.  

Network Model. In this work, the Tree-based topology [3, 7, 

8, 10, 25] like FatTree [30] (Figure 3) is considered. We 

conduct the experiments in the testbed and NS-3 simulator 

using FatTree topology. From the experiments, we find that 

the processing and queuing times are significant in the 

aggregation and core switches which confirms with the 

findings in [10,11 25]. Moreover, we find that the bottleneck 

has shifted from ToR switches and becomes more evenly 

distributed among different layers. This is due to the high 

speed NICs matching the speeds of core switch ports. 

IV. SCHEDULING SCHEME 

A. Problem Formulation 

The problem for the offline case  of coflow scheduling can 

be formulated as follows: we have 𝑛 number of coflows in a 

system numbered by 𝑐 = 1, 2, …, 𝑛. Then, the problem is 

formulated as an optimization problem as follows.   

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑡𝑐

𝑛

𝑐=1
 ,                                (1)   

∑ 𝑥𝑓 ≤ ℬ𝑙

𝑓∈𝑙

,   ∀𝑙 ∈ 𝐿,                                  (1. 𝑎) 

𝑤𝑓 ≤ 𝒯𝑤 ,   ∀𝑓 ∈ 𝑐,   𝑜𝑣𝑒𝑟 𝑡𝑐 , 𝑤𝑓 ≥ 0           (1. 𝑏) 

The variable 𝑡𝑐 refers to the completion time of a coflow 𝑐 and 

can be evaluated via the expression. 𝑡𝑐 = max(𝑡𝑓|  ∀𝑓 ∈ 𝑐), 

where 𝑡𝑓 refers to the completion time of a flow 𝑓. Put it 

another way, 𝑡𝑐 is denotes the completion time of the slowest 

flow in a coflow. First, constraint (1.a) ensures that the 

aggregate flow of link 𝑙 does not exceed link capacity ℬ𝑙 . 

Second, constraints (1.b) ensures that the starvation and 

packet out-of-order problems are eliminated.  It is also vital to 

observe that the above formulation for CCTs minimization is 

an NP-Hard problem [3,4] and is reducible to the well-known 

Open Shop Problems [12].  

B. Decentralized Coflow Scheduling Mechanism 

Prior works focused on the many-to-one scenario with 

the assumption that coflow size is unknown a priori. In this 

paper, however, we address the more difficult many-to-many 

scenarios.   

Generally, Creek uses the C-SJF scheduler to reduce the 

CCTs by simply giving priority to smaller coflows over larger 

ones. In C-SJF,  first the coflow size is compared to a 

threshold 𝒯 at the receiver’s end. Then, if the coflow size 

exceeds 𝒯, then the coflow priority is demoted. The problem 

is coflow size is unknown a priori, hence prior size 

measurement is not be possible. We resolve this by initially 

assigning every coflow to the highest priority and the priority 

is dynamically demoted based on the number of bytes 

received for the coflow. The receiver then updates the 

workers with the new priority values by piggybacking the 

priority on the ACK packets. 

Creek also takes into account the coflow condition when 

deciding the priority (e.g.. the number of completed flows). 

It also ensures compatibility with the commodity switches, 

by performing the scheduling at the receiver’s end as the 

information on coflow and its flows are readily available at 

the receiver side. 

 Creek enforces SJF by leveraging the multi queues 

commonly available in the commodity switches, to realize a 

multi-level feedback queue (MLFQ). As have been pointed 

out in [5], MLFQ may result into the starvation of some flows 

and Weighted Fair Queuing (WFQ) may provide a better 

solution. In Creek, MLFQ is adopted because priority queues 

provides better in-network prioritization and potentially 

achieves lower CCT. Moreover, WFQ may introduce the out-

of-order problem for TCP flows. Having said that, later we  

propose an algorithm that ensures starvation free operation 

for Creek.    

Coflow Priority Decision. Consider 𝐾 priority queues in the 

commodity switches [1] and given coflow 𝑐, priority 𝑃𝑓
𝑘 

denotes  𝑘𝑡ℎ priority queue assigned to flow 𝑓 ∈ 𝑐, such that 

1 ≤ 𝑘 ≤ 𝐾. Then, the priority assignment is as follows: 𝑃𝑓
1 >

𝑃𝑓
2 > ⋯ > 𝑃𝑓

𝑘 > ⋯ > 𝑃𝑓
𝐾 , where 𝑃𝑓

1 is the highest priority and 

𝑃𝑓
𝐾  is the lowest priority. Every 𝑃𝑓

𝑘 mirrors to a threshold 𝜏𝑘. 

Not that, most of existing commodity switches only support 

a maximum of 8 priorities queue [1]. Let 𝑃𝑓 denote the 

priority assigned to 𝑓, such that 𝑃𝑓 = 𝑃𝑓
𝑘.  Initially, all 𝑓 is 

assigned to 𝑃𝑓
1, such that ∀𝑓 ∈ 𝑐, 𝑃𝑓 = 𝑃𝑓

1. Therefore, given 

flow size 𝑥𝑓 ≥ 0, the priority 𝑃𝑓 is decided as follows. 

Coflow management. In coflows that create many-to-many 

communication patterns, the coflow typically may consist of 

many sub-cofows. In such case, there would be many 

receivers in a single coflow. Hence, sub-coflows of the same 

coflow is considered as a single entity and the completion of 

the coflow relies on the completion of all of its sub-coflows. 

Some of the many scheduling challenges with this pattern in 

decentralized settings are keeping track of the relationship 

among sub-coflows of the same coflow, deciding the 

appropriate priority values when coflow information is 

sparse, and a sub-coflow may not know about some of the 

other sub-coflows.  



 

 

 
Fig 4.  Coflow dependency 4(a and b), where each layer represents the 

webserver, cache follower, cache leader, and database in Cloudera’ TPC-DS 
(fig. 4c), and Facebook’s Tao Architecture (Fig 4.d). 

To address these challenges, Creek utilizes shared-

storage to allow sub-coflows of the same coflow easily 

exchange necessary status information with each other. In 

other words, the receivers of the same coflow will share and 

access the same data storage. 

A task manager allocates a small amount of space at a 

designated storage space in a server to every new coflow. 

Thus, all receivers of this coflow use this storage to provide 

information, such as updates and queries on the total bytes 

have been sent. Hence, the number of communication within 

a coflow can be reduced from 𝑂(𝑛2) down to 𝑂(𝑛 − 1), 

where is 𝑛 denotes the number of receivers of a coflow. 

However, one of the practical challenges is how to 

synchronize receivers of a coflow, such that information can 

be updated appropriately. This problem is known as  race 

condition in operating system. There are multiple receivers 

sharing a common buffer but there is only one receiver that 

can update the information. This problem is solved using 

locking mechanism such as Mutex, a mutual exclusion based 

scheme. Thus, only a single receiver with Mutex is allowed 

to update and modify the information in the shared storage 

space. We also utilize Mutex semaphore based locking 

mechanism to resolve the race condition between receivers of 

a coflow in our testbed implementation. 

Starvation Mitigation. To resolve starvation, when the wait 

exceeds a waiting threshold, worker of the starving flow 

retransmits packets that have not been acknowledged with 

higher priority assignment. The duplicate packets will be 

dropped at the receiver by TCP [29] if there is any. By doing 

so, the solution also avoids packet TCP out of order problem. 

The process is repeated until the flow escapes the starvation. 

Then, upon receiving a packet from the starving flow, the 

receiver compares the priority of the recent sent packet with 

the priority currently assigned to the starving flow. If it does 

not match, then the receiver increases that coflow priority and 

notifies the worker of the starving flow with new priority 

through the ACK packet. As pointed in [25], ECN can help 

in mitigating starvation, but it may accidently mark packets 

from mice coflows, because ECN is not designed to be aware 

of coflows 

Setting threshold. The value of threshold is important in 

determining the system performance. If the threshold is too 

small or too large, packets of short flows may prematurely 

experience queuing delay behind elephant flows. Although 

threshold is commonly used in system design [3,4,10,25,28], 

there is very little study on how threshold should be set, such 

that system achieves optimality. We observe doing this does 

not guarantee convexity, and therefore it is possible that this 

is a non-convex problem (an NP-Hard problem).   

Authors of [25] attempt to formulate threshold setting 

into convex optimization problem, but it uses too many 

constraints in the formulation, which is not realistic. From our 

experiments, we derive two observations: (𝑖) Thresholds 

should be able to quickly direct traffic into appropriate queue. 

(𝑖𝑖) To mitigate starvation, the wait of the lowest priority 

should not exceed TCP retransmission timeout (RTO) [29]. 

Using these two rules of thumbs, our threshold leads to very 

minimal starvation in our testbed experiments. At this point, 

however, the threshold is decided by using exhaustive search, 

which may imply a higher overhead cost for larger systems. 

We will further investigate setting of threshold using machine 

learning techniques proposed in [26] in our future work.   

Data structure. One challenge in implementing Creek is 

keeping track of the amount of bytesent generated by a large 

number of coflows. In practice, multiple coflows arrive and 

complete the task. Thus, information on coflows must be 

added or removed to the data structure when coflows start and 

complete respectively. For this reason, the data structure must 

be adaptive to the dynamics of start-complete cycle while at 

the same time keeping the computation cost low (e.g. lookup 

operation).  

In our testbed implementation, we use two dynamic arrays 

available in C++ library (e.g. vector) to track coflows  and 

sub-coflows’ bytesent. We assume that coflow ID is unique 

globally is unique within a coflow. Then, Creek utilizes these 

IDs as coflow index and the information is inserted such that 

the IDs are sorted in increasing order, which is linear using 

the existing technique. Since the structure is dynamic caused 

by the start-complete cycle, straightforward hashing is not 

suitable for lookup operation. To resolve this, Creek utilizes 

binary based search algorithm [32], which is 𝑂(log 𝑛) and 𝑛 

denotes the array size. This is possible because the array is 

sorted.  

Without careful coordination between inserting, deleting, 

updating, and information retrieval operation, the system 

may end up in a race condition where different threads are 

competing to modify the same information or data structure. 

This can result in inaccurate information update. For 

example, two threads are performing simultaneous updates at 

the same location in memory causing the new information to 

only reflect one of the updates instead of both updates.  

We mitigate this issue by utilizing strict priority queue 

non-preemptive scheduling (SPQ-NS). Here, an operation 

(e.g. delete, update, insert, or read) cannot be interrupted 

when it is being performed even when there is an operation 

in higher queue waiting to be performed. Operations in each 

queue of SPQ-NS is performed in first-in-first-out order and 

the coordination between operation is done using Mutex. 

Here, information update and insert operations are assigned 

to the highest priority, information retrieval is assigned to a 

lower priority, and delete operation is assigned to the lowest 

priority. Moreover, deletion is only performed once every 

interval time (e.g. every 1 second). By doing this we prevent 

race condition. 

a) b) c) d) 



 

 

            

Fig. 5. Testbed Topology with 10 servers and ToR Switch. 

V. EVALUATION 

The performance of the proposed scheduling scheme is 

evaluated via number of experiments in 10Gbps testbed as 

well as large-scale network simulation using NS3 and 

Facebook traces from [4,5]. The main metrics used for 

evaluation are the average CCT and performance 

improvement factor, which is described as follows:  

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  
𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝐶𝐶𝑇

𝐶𝑟𝑒𝑒𝑘′𝑠 𝐶𝐶𝑇
                     (2) 

If the improvement is greater (smaller) than one, Creek is 

faster (slower).  

The main findings are summarized below: 

1. In the testbed experiment, Creek significantly reduces the 

average coflows CCTs relative to TCP by up to 1.8× and 

the average mice flows FCTs by up to 1.833× 

2. In the simulation experiments, Creek outperforms 

decentralized approaches such as Baraat, Per-Flow-Fair-

Sharing (FS), and Stream by up to 1.82×, while achieving 

comparable outcomes with the centralized scheme Aalo.       

A. Testbed Experiment  

Prototype: Creek prototype is built on top of the existing 

TCP implementation and synthesized as a loadable kernel 

module in Linux. Then, we implement client and server 

model to emulate multiple workers and receivers by utilizing 

socket programming at the application level. In this model, 

packets are transmitted from clients acting as workers to 

server acting as receivers. Our prototype randomly generates 

216 and 432 TCP flows with different sizes according to 

heavy tailed distribution; then, these flows are randomly 

clustered into 20 and 30 coflows respectively with each 

coflow has 2 and 3 receivers. In this experiment, the TCP 

kernel module is modified so that the coflow ID can be 

inserted into the IP option field in TCP packet header [29]. 

Moreover, we used local memory to store coflow 

information, such as total bytes sent.    

Testbed: Figure 5 shows the testbed used in evaluation. It 

consists of 12 datacenter-scale servers are connected together 

via a ToR 48-port 1 Gigabit Ethernet switch (Pica8 P-3297) 

and a control-plane 4-port 10 Gigabit Ethernet switch. The 

ToR switch supports strict priority queuing with at most 8 

classes of services queue [1]. Each server is a HUAWEI 

RH1288 V2 with 24-core Intel(R) Xeon(R) CPU E5-2630 v2 

@ 2.60GHz, 64G memory, a 2T hard disk, and Broadcom 

BCM5719 NetXtreme Gigabit Ethernet NIC. Each server 

runs Ubuntu 14.04.2 LTS with Linux 4.0 kernel.  In the ToR  

 
Fig. 6. Testbed experiment. Scenario 1: There are 30 coflows with each 
coflow has 3 receivers and each receiver is serving 5 flows.  Scenario 2: 

There are 20 coflows with each coflow has 2 receivers and each receiver is 

serving 2 to 3 flows. 

switch, strict priority queues are enforced and packets 

are classified based on the DSCP field [1,29]. 

Experiment: To evaluate Creek, we create two experimental 

scenarios. In the experiments, 10 machines are running client 

application sending data to a 11th machine running server 

application. In the first one, the experiment is conducted by 

starting 432 TCP flows which are classified into 30 coflows. 

In the second one, 216 TCP flows are initiated to make up for 

20 coflows. In both scenarios, to reflect a more realistic 

environment, the 12th server  is used to generate background 

traffic using iperf, which is a popular Linux traffic generator, 

at the speed of 500 Mbps (which is the equivalent of 50% of 

the link capacity). This is a common traffic pattern seen in 

many datacenters [11].  In both scenarios, we compare the 

CCTs of our scheduling scheme to the CCTs of using regular 

TCP [29]. This set of experiment is conducted using 8 priority 

queues. Later in the section, we conduct another experiment 

to measure the performance of using different number of 

priority queues. One of challenges performing testbed 

experiments is to generate sufficient traffic load that mimics 

bursty traffic without causing Denial of Service (DoS) [29]. 

In our testbed, traffic with 435 connections or larger causes 

Denial of Service. 

The testbed results, as shown in Figure 6(a), demonstrate 

that Creek, when compared to TCP, it can improve the 

average performance by 1.8× and 1.533× in the first and 

second scenario respectively. Specifically, the average CCTs 

of 30 coflows with TCP is 14.9 and 9.73 milliseconds in the 

first and second scenario respectively; on the other hand, the 

average CCTs in our scheduling scheme is 8.1 and 6.47 

milliseconds respectively. Similarly, Figure 6(b) depicts that 

using our coflow scheduling also improve the average 

performance of mice flows by 1.8×  and 1.7× with 20 and 30 

coflows respectively. This experiment shows that the 

proposed scheme performs better than TCP, especially in 

networks with higher traffic load. 

B. Large Scale Simulation Experiments  

To evaluate our proposed scheduling scheme in large 

scale network, we develop a flow-level simulator where it 

accounts for the coflow arrival and departure events at the 

flow level. It updates the rate and remaining volume of each 

flow when event occurs. We model a data center with  3465 

hosts and 720 switches of 10 Gigabit (10G) link speed  in Fat-

tree topology [30] of size k=24.   
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Fig. 7, Large scale experiments using (a) TPC-DS and (b) FB-Tao 
benchmark.  

 I II III IV V 
Size B 6MB-1GB 1GB-10GB 10GB-100GB 100GB-1TB >1TB 

Table 2. Five categories of coflow with different size in many-to-many 

pattern (size B). 

In simulation experiments, Creek’s performance is 

compared to baseline Per-Flow-Fair-Sharing, Baraat [3], 

Stream [27], and Aalo [5]. Per-Flow-Fair-Sharing (PFS) 

mechanism is a scheduling scheme that divides the resource 

capacity equally among flows traversing the same link, which 

is also the baseline in our analysis. Baraat is a First in First 

out with limited multiplexing scheme. Stream, is also a 

decentralized scheduling scheme, which opportunistically 

leverages coflow communication pattern.  

Realistic traffic pattern and load. Creek is evaluated using 

real traffic pattern and traffic load by replaying 526 coflows 

from actual production traffic traces from 3000 servers in 

Facebook production datacenter  [4,5], which capture a one-

hour Hive/MapReduce trace. In our simulation,  Equal-cost 

multi-path routing (ECMP) [29] routing protocol, which is 

used in datacenters to route and load balance network traffic, 

is also used in the simulations.  Moreover, TCP is the 

dominant transport protocol in datacenter, hence we 

implement rate limiters that acts like TCP for all the schemes, 

except for Baraat whose rate limiter follow its design [3]. 

Traffic Pattern. To run the simulations, Cloudera’s 

Industrial benchmark is used. Specifically, the TPC-DS 

query-42 (TPC-DS) [4], and Facebook Tao (FB-Tao) [28,31] 

traces are used to create many-to-many scenario (because 

Facebook trace only consists of coflow with many-to-one). 

We use these benchmarks and insights from 

[3,4,19,23,24,31] to synthesize the original trace to generate 

realistic trace of many-to-many pattern. The coflow sizes for 

the many-to-many pattern is shown in table 2. 

Scenario 1: TPC-DS benchmark. Figure 7(a) shows that 

Creek is at least 1.82× better than Baraat and FS. And it 

shows similar performance as the centralized scheme Aalo. 

Creek also outperforms Baraat, FS, and Aalo in Group I by 

almost 1.8×, 1.6×, and 1.2×, respectively. All in all, 

compared to Baraat and FS, Creek is at least 1.83× better and 

Creek’s and Aalo’s performance are comparable. 

Scenario 2: FB-Tao benchmark. Figure 7(b) shows that, on 

average, Creek superceeds Baraat, FS, and Stream by 1.6×, 

1.2×, and 1.1× respectively. And, for small coflows, Creek 

is only within 1% to Aalo. In conclusion, Creek is better than 

both Baraat and FS, by at least 1.2× across all groups. This 

is because Creek can achieve similar performance of Stream 

but without its communication overhead. Creek also has 

comparable performance to Aloa across the various groups. 

Creek’s ability to quickly differentiate coflow according to 

its states with information at sub-coflow level allows for its 

superiority over Baraat and FS. This allows Creek to quickly 

divert coflows and allocate appropriate resources earlier, 

which avoids delay. In contrast, Baraat and FS severely suffer 

longer delay. Moreover, by resorting the information 

management to a third party,  Creek achieves slightly better 

performance compared to Stream, but with significantly 

lesser communication overheads (i.e., 𝑂(𝑛 − 1) as in IV).    

On average, Creek’s overall performance is comparable to 

a centralized scheme Aalo. This is because Aalo only realizes 

a coflow is a mice coflow when it is completed; this means 

mice coflow is processed together with larger coflow in Aalo. 

Creek on the other hand is a sub-coflow based system, and 

therefore mice coflow can be quickly recognized as soon as a 

sub-coflow is competed. This enables Creek to prioritize 

mice coflow before its completion and quickly separate it 

from larger coflows, which results in lower CCTs. This 

approach takes advantage of the fact that sub-coflows of a 

mice coflow is typically small. For large coflows consisting 

of many mice sub-coflows, one of the parents of mice sub-

coflows can recognize and separate it.  

Finally, Aalo is performs better than Creek (by ~0.1×) 

because it is a centralized scheme with global information 

(i.e., Aalo can be more precise in distinguishing coflows with 

similar characters, which benefits these two categories). 

However, Creek compensate for this by achieving superior 

performance in all categories compared to the decentralized 

schemes.   

VI. CONCLUSION 

Creek is a decentralized coflow scheduler that aims to 

minimize CCT for Many-to-Many communication patterns 

and the communication overhead between receivers . The 

results from both testbed and large scale network simulation 

experiments show that Creek is a simple but effective 

coordination between receivers can improve applications’ 

performance in datacenters. Creek outperforms decentralized 

schemes like Baraat, FS, and Stream, and performs 

comparably well to centralized schedulers like Aalo. 
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