Creek: Inter Many-to-Many Coflows Scheduling
for Datacenter Networks

Hengky Susanto! Ahmed M. Abdelmoniem? Hao Jin® Brahim Bensaou*
Huawei Tech.! , HKUST?#, Texas A&M University*
hengky susanto@huawei.com' amas@cse.ust.hk? haojin@tamu.edu® brahim@cse.ust.hk*

Abstract— In datacenter networks, many data transfers
usually constitute semantically a coflow group. Typically, a
coflow is considered completed when all transfers in a coflow
are completed, and hence the data and information are useful to
applications. That is why, applications’ performance are
optimized whenever the completion time at the level of a coflow
rather than the individual flows is minimized. The current
popular coflow scheduling algorithms are centralized based
approach, but they incur high overhead cost. The decentralized
approach in the Many-to-Many scenario also incurs high
communication overhead cost caused due to the communication
among the local controllers. Therefore, in this paper, we present
a coflow scheduling mechanism that aims to minimize the coflow
completion time for coflow with Many-to-Many communication
pattern. And by product the communication overhead costs are
minimized. Using a testbed implementation in our mini
datacenter and large-scale network simulation, we demonstrate
that our scheduling scheme improve the coflow completion time
on average by up to 1.8 X compared to the baseline in both cases.
These are achieved while preserving compatibility with existing
commodity switches and network protocols.

[. INTRODUCTION

Network traffic in modern datacenters is often a result of
the communication requirements at the application level.
Recently, the term coflow provided a meaningful semantic
that translates application requirements to matrices which can
be understood at network level (e.g., the data plane layer). In
networking context, a coflow consists of a set of concurrently
active flows set to complete a specific data transfer started by
the application. Typically, the completion of data transfer of
all flows within the same coflow signifies the completion of
the communication stage for the application. Applications
strive to achieve faster completion of their communication
tasks which greatly depends on minimizing coflow’s
completion time (CCT). However, this dependency may lead
to inter coflow bottleneck, which can severely degrade the
performance at the application level.

To address the dependency problems, many recent
proposals puts this problem into the form of CCT
minimization. The popular approaches are usually designed in
centralized manner [4,5,6,7,8,9] where a single centralized
scheduler is responsible for scheduling the coflows of the
entire network. However, a high overhead cost is required for
maintaining such a centralized system. Alternatively, there are
various decentralized state of the art solutions. For instance,
Barat [3] requires switch modifications where the task of
scheduling coflows is performed at switches. However, lacks
access to coflow level information because switches only have
access to information at flow level, which leads to less optimal

outcome. In addition, because this decentralized solution
requires elaborate software modifications in the switches, it is
harder to deploy. Stream [27] does not require switch
modification but requires local controllers of the same coflow
to exchange information, which may result in communication
overhead cost. Moreover, decentralized schemes also
commonly suffer from sub-optimal outcome because of the
lack of a complete picture of coflow states and the inability to
achieve global coordination between the local controllers. In
this paper we present Creek: a decentralized inter coflow
scheduler for coflows with Many-to-Many communication
patterns without requiring hard modification and imposes
minimal communication overhead cost. Creek is designed to
resolve the challenges in decentralized scheduling systems,
while at the same time possessing key advantages of
centralized system. Creek is capable of acquiring a more
complete picture of coflow states and accomplishes an
approximate global coordination, achieves near optimal
performance, without the overhead cost of centralized
solutions.

The key to the solution depends on understanding the
communication pattern which provides insights to achieve the
objective of minimizing CCTs effectively. One-to-Many is a
pattern where a single node receives data transfer from many
senders and forms a single coflow [19,22,23,24]. Many-to-
Many is a pattern where many receivers receives data transfer
from many senders [18,20]. In other words, that is a single
Many-to-Many coflow consists of multiple Many-to-One
coflows, which is the focus of this paper.

In this paper, we present, Creek, our inter coflow
scheduler for coflow with Many-to-Many communication
pattern which acquires the necessary information on coflows
at receiver’s end. The scheduling policy is enforced and
communicated by leveraging existing network components
(e.g., functionalities that are commonly available in
commodity switches) and the mechanics of existing transport
protocol (e.g., TCP/IP). For inter coflows scheduling decision,
Creek employs Conditional Shortest Job First (C-SJF), where
coflow is scheduled based on the condition of coflow state in
SJF fashion. To reduce the communication overhead required
for the receivers of a coflow to communicate with each other,
Creek resorts the information management to a third party,
which can be a designated node that store coflow information.

In our performance analysis, we evaluate our solution
through actual testbed experiments and large scale simulation
experiments. In the testbed experiments, we implement Creek
and deploy the prototype in a mini datacenter testbed. This
also shows that the solution is production deployments

mailto:hengky_susanto@huawei.com1
mailto:amas@cse.ust.hk2
mailto:haojin@tamu.edu3
mailto:brahim@cse.ust.hk4

friendly. Moreover, the experiments demonstrate that Creek

outperforms the baseline by 1.8X. In the large scale

simulation, we evaluate Creek performance by replaying an

actual production trace of coflow traffic workload from a 3000

servers (150 racks) in Facebook production datacenter [4].
Specifically, the evaluation is performed by using widely

accepted traces from Facebook along with two benchmarks:

TPC-DS [5] query and Facebook’s Tao structure [28]. In our

evaluation, Creek superseeds both Baraat and the traditional

per-flow fair sharing scheme by 1.85X on average, and
achieves comparable performance with the -centralized
scheme. As for mice coflow CCT, Creek is up to 28X better
than per flow fair sharing and up to 18X better than Baraat.

Here, Creek also achieves similar outcome with centralized

system. At last, finding in [4] shows that priority based

scheme follows diminishing return behavior, and in this paper
we provide an insight to this behavior through theoretical and

(testbed and simulation) experiment results.

Our contributions can be summarized as follows:

1. Propose a coflow scheduling scheme for coflows with
Many-to-Many communication patterns, which minimizes
the communication overhead between receivers .

2. Deploy our solution in our mini datacenter. Evaluate
solution in large-scale setting.

This paper is organized as follows. We present previous
related work in section II and the system model in section III.
Then, we describe Creek in section IV. Simulation results are
presented in section V, then concluding remarks in section VI.

II. RELATED WORK

One of the early works on this theme is Orchestra [6],
where the semantic among flows is accounted in the design of
the flow transfers optimization in datacenter. Sincronia [2],
Varys [4], Aalo [5], and NC-DRF [21] by prioritizing
smallest-total-size-first based approach in their scheduling
mechanisms which improved the performance in [6]. RAPIER
[7] extends [4] by incorporating routing algorithms into the
scheduling scheme.

Likewise, CORA [8] also extends the problem in [4] by
integrating the resources allocation solution into the flow
scheduling scheme. In later development, the authors of [9]
extended the problem in [4] and have taken into account the
importance level of different coflows. Then they reformulated
the problem into a weighted CCTs minimization problem. The
aforementioned schemes falls into the centralized scheduling
category that typically provide near optimal scheduling.
However, these approaches are critized for incurring very high
cost of centralized system management and are generally hard
to realize because they require significant switch
modifications and/or a complex control plane.

On the other hand, as an alternative, there is the
decentralized approach. In this approach, Baraat [3]
dominates as the state-of-the-art decentralized coflow
scheduling system. Baraat relies on various heuristics which
is based on a multiplexed First-In First-Out (FIFO) principles.

In Baraat, whenever large coflows are observed in the
network, Baraat improves the CCT by processing mice flows
in the background. Otherwise, mice flows are processed
according to the trivial FIFO scheduling. Even though, Baraat
proves to be effective, it has a few drawbacks. First, its

input data

map tasks

reduce tasks

!

I:I I:I output data

Fig. 1. Data Shuffle between mappers and reduces in Hadoop [18].

Flow size The length of a flow

Coflow size The sums of all flows in a coflow in bytes.
Coflow width | The number of parallel flows in a coflow.
Coflow length | Largest or longest flow in coflow in bytes.

Table 1. Terminology

1
0E
0s

D4 o4

0z 0z

U 0

1E+06 LE+1D l: 14 1FE+06 1E+08 1E:10
) Bytes Bytes

]

048

Frac.of Coflows

Frac. of Collows
=
Frae, of Coflows

l.E-H')U ‘.: 04 1 E+08 ;
¢ Number of Flows 9) Craitn prsina

Fig. 2. CDF plot: a) coflow size , b) length, and ¢) width from Facebook
datacenter [4], and d) coflow size in Bing, Microsoft datacenter [3].

1113} i EL il
="

é(.. I/@ Aaggui
¥

E Edgy

@@@@ 3390

Fni. Fudd

Fig. 3. FatTree network topology [30].

scheduling decisions are made locally at switches which limits
the scheduler access to only flow level information. So, the
scheduler has an incomplete information about coflow states
and results in sub-optimal performance. Second, Baraat also
requires modifications to switches’ source code which makes
it not deployment friendly.

Stream [27] is another recently proposed decentralized
scheduler which opportunistically choose the receiver in
Many-to-One and Many-to-Many communication patterns.
However, since Stream requires its receivers of a same coflow
to communicate with each other for coordination, Stream has
high overhead communication cost. In our work, we adopt
different approach where we solve the general coflow
scheduling problem in decentralized manner for Many-to-
Many patterns, without requiring hardware modification with
minimal communication overhead.

III. SYSTEM MODEL
In this section, we discuss the coflow abstraction,
describe coflows in production, and the network model used
in the study.

Coflow Abstraction. A coflow is generally characterized by
the number of its concurrent flows (width), its total
transferred bytes (size), and its longest flow in bytes (length).
These characteristics determine the state of coflow during its
lifetime. For example, a coflow state is known by tracking
the number of completed flows of the coflow, the number of
bytes transferred/received of the coflow, etc.

Coflows in Production. In this work [4], the authors observe
that coflow sizes follow a heavy trailed distribution. Even
though, in Facebook datacenter, large coflows of at least 10
Gb make 8% and ones of at least 1 Gb make 15% of all
coflows, they are responsible for 98% (99.6%) of the traffic,
respectively. This means that most coflows are small in the
size and contribute the least bytes to the network as shown in
Figures 2a, 2b, and 2c¢. This confirms to the findings in [3, 6]
from Microsoft’s datacenter, as shown in Figure 3d, which
shows that coflow sizes abide to the heavy tailed distribution.
Another work [14] which studied data-mining application and
found it also has a very heavy tailed distribution where 95%
of all data bytes come from flows larger than 35MB which
make for only 3.6% of all flows. This again confirms that data
mining application generates more small sized flows, but the
traffic in the network comes from few large sized flows.

Network Model. In this work, the Tree-based topology [3, 7,
8, 10, 25] like FatTree [30] (Figure 3) is considered. We
conduct the experiments in the testbed and NS-3 simulator
using FatTree topology. From the experiments, we find that
the processing and queuing times are significant in the
aggregation and core switches which confirms with the
findings in [10,11 25]. Moreover, we find that the bottleneck
has shifted from ToR switches and becomes more evenly
distributed among different layers. This is due to the high
speed NICs matching the speeds of core switch ports.

IV. SCHEDULING SCHEME
A. Problem Formulation
The problem for the offline case of coflow scheduling can
be formulated as follows: we have n number of coflows in a
system numbered by ¢ = 1, 2, ...,n. Then, the problem is
formulated as an optimization problem as follows.

n
minimize Z te, (D
c=1
fo <B, VIEL, (1.a)
fel
wr < T, VfEc, overt,ws;=0 (1.b)

The variable ¢, refers to the completion time of a coflow ¢ and
can be evaluated via the expression. t, = max(t;| Vf € c),
where t; refers to the completion time of a flow f. Put it
another way, t. is denotes the completion time of the slowest
flow in a coflow. First, constraint (1.a) ensures that the
aggregate flow of link [does not exceed link capacity B;.
Second, constraints (1.b) ensures that the starvation and
packet out-of-order problems are eliminated. It is also vital to
observe that the above formulation for CCTs minimization is
an NP-Hard problem [3,4] and is reducible to the well-known
Open Shop Problems [12].

B. Decentralized Coflow Scheduling Mechanism

Prior works focused on the many-to-one scenario with
the assumption that coflow size is unknown a priori. In this
paper, however, we address the more difficult many-to-many
scenarios.

Generally, Creek uses the C-SJF scheduler to reduce the
CCTs by simply giving priority to smaller coflows over larger
ones. In C-SJF, first the coflow size is compared to a
threshold T at the receiver’s end. Then, if the coflow size
exceeds T, then the coflow priority is demoted. The problem
is coflow size is unknown a priori, hence prior size
measurement is not be possible. We resolve this by initially
assigning every coflow to the highest priority and the priority
is dynamically demoted based on the number of bytes
received for the coflow. The receiver then updates the
workers with the new priority values by piggybacking the
priority on the ACK packets.

Creek also takes into account the coflow condition when
deciding the priority (e.g.. the number of completed flows).
It also ensures compatibility with the commodity switches,
by performing the scheduling at the receiver’s end as the
information on coflow and its flows are readily available at
the receiver side.

Creek enforces SJF by leveraging the multi queues
commonly available in the commodity switches, to realize a
multi-level feedback queue (MLFQ). As have been pointed
out in [5], MLFQ may result into the starvation of some flows
and Weighted Fair Queuing (WFQ) may provide a better
solution. In Creek, MLFQ is adopted because priority queues
provides better in-network prioritization and potentially
achieves lower CCT. Moreover, WFQ may introduce the out-
of-order problem for TCP flows. Having said that, later we
propose an algorithm that ensures starvation free operation
for Creek.

Coflow Priority Decision. Consider K priority queues in the
commodity switches [1] and given coflow c, priority Pf"
denotes k" priority queue assigned to flow f € c, such that
1 < k < K. Then, the priority assignment is as follows: P} >
P} > .- > Pf > > PF, where P} is the highest priority and
PfK is the lowest priority. Every Pf mirrors to a threshold .
Not that, most of existing commodity switches only support
a maximum of 8 priorities queue [1]. Let Py denote the
priority assigned to f, such that P, = Pf" . Initially, all f is
assigned to Pfl, such that Vf € ¢, P = P}. Therefore, given
flow size x; = 0, the priority Pf is decided as follows.
Coflow management. In coflows that create many-to-many
communication patterns, the coflow typically may consist of
many sub-cofows. In such case, there would be many
receivers in a single coflow. Hence, sub-coflows of the same
coflow is considered as a single entity and the completion of
the coflow relies on the completion of all of its sub-coflows.
Some of the many scheduling challenges with this pattern in
decentralized settings are keeping track of the relationship
among sub-coflows of the same coflow, deciding the
appropriate priority values when coflow information is
sparse, and a sub-coflow may not know about some of the
other sub-coflows.

Coflow Cg

Cag Ep Loz
Caz

Coflow &y

Co

i
9wl d;”EI g ﬁ

Fig 4. Coflow dependency 4(a and b), where each layer represents the
webserver, cache follower, cache leader, and database in Cloudera’ TPC-DS
(fig. 4c), and Facebook’s Tao Architecture (Fig 4.d).

To address these challenges, Creek utilizes shared-
storage to allow sub-coflows of the same coflow easily
exchange necessary status information with each other. In
other words, the receivers of the same coflow will share and
access the same data storage.

A task manager allocates a small amount of space at a
designated storage space in a server to every new coflow.
Thus, all receivers of this coflow use this storage to provide
information, such as updates and queries on the total bytes
have been sent. Hence, the number of communication within
a coflow can be reduced from O(n?) down to O(n — 1),
where is n denotes the number of receivers of a coflow.

However, one of the practical challenges is how to
synchronize receivers of a coflow, such that information can
be updated appropriately. This problem is known as race
condition in operating system. There are multiple receivers
sharing a common buffer but there is only one receiver that
can update the information. This problem is solved using
locking mechanism such as Mutex, a mutual exclusion based
scheme. Thus, only a single receiver with Mutex is allowed
to update and modify the information in the shared storage
space. We also utilize Mutex semaphore based locking
mechanism to resolve the race condition between receivers of
a coflow in our testbed implementation.

Starvation Mitigation. To resolve starvation, when the wait
exceeds a waiting threshold, worker of the starving flow
retransmits packets that have not been acknowledged with
higher priority assignment. The duplicate packets will be
dropped at the receiver by TCP [29] if there is any. By doing
so, the solution also avoids packet TCP out of order problem.
The process is repeated until the flow escapes the starvation.
Then, upon receiving a packet from the starving flow, the
receiver compares the priority of the recent sent packet with
the priority currently assigned to the starving flow. If it does
not match, then the receiver increases that coflow priority and
notifies the worker of the starving flow with new priority
through the ACK packet. As pointed in [25], ECN can help
in mitigating starvation, but it may accidently mark packets
from mice coflows, because ECN is not designed to be aware
of coflows

Setting threshold. The value of threshold is important in
determining the system performance. If the threshold is too
small or too large, packets of short flows may prematurely
experience queuing delay behind elephant flows. Although
threshold is commonly used in system design [3,4,10,25,28],
there is very little study on how threshold should be set, such
that system achieves optimality. We observe doing this does

not guarantee convexity, and therefore it is possible that this
is a non-convex problem (an NP-Hard problem).

Authors of [25] attempt to formulate threshold setting
into convex optimization problem, but it uses too many
constraints in the formulation, which is not realistic. From our
experiments, we derive two observations: (i) Thresholds
should be able to quickly direct traffic into appropriate queue.
(ii) To mitigate starvation, the wait of the lowest priority
should not exceed TCP retransmission timeout (RTO) [29].
Using these two rules of thumbs, our threshold leads to very
minimal starvation in our testbed experiments. At this point,
however, the threshold is decided by using exhaustive search,
which may imply a higher overhead cost for larger systems.
We will further investigate setting of threshold using machine
learning techniques proposed in [26] in our future work.

Data structure. One challenge in implementing Creek is
keeping track of the amount of bytesent generated by a large
number of coflows. In practice, multiple coflows arrive and
complete the task. Thus, information on coflows must be
added or removed to the data structure when coflows start and
complete respectively. For this reason, the data structure must
be adaptive to the dynamics of start-complete cycle while at
the same time keeping the computation cost low (e.g. lookup
operation).

In our testbed implementation, we use two dynamic arrays
available in C++ library (e.g. vector) to track coflows and
sub-coflows’ bytesent. We assume that coflow ID is unique
globally is unique within a coflow. Then, Creek utilizes these
IDs as coflow index and the information is inserted such that
the IDs are sorted in increasing order, which is linear using
the existing technique. Since the structure is dynamic caused
by the start-complete cycle, straightforward hashing is not
suitable for lookup operation. To resolve this, Creek utilizes
binary based search algorithm [32], which is O(logn) and n
denotes the array size. This is possible because the array is
sorted.

Without careful coordination between inserting, deleting,
updating, and information retrieval operation, the system
may end up in a race condition where different threads are
competing to modify the same information or data structure.
This can result in inaccurate information update. For
example, two threads are performing simultaneous updates at
the same location in memory causing the new information to
only reflect one of the updates instead of both updates.

We mitigate this issue by utilizing strict priority queue
non-preemptive scheduling (SPQ-NS). Here, an operation
(e.g. delete, update, insert, or read) cannot be interrupted
when it is being performed even when there is an operation
in higher queue waiting to be performed. Operations in each
queue of SPQ-NS is performed in first-in-first-out order and
the coordination between operation is done using Mutex.
Here, information update and insert operations are assigned
to the highest priority, information retrieval is assigned to a
lower priority, and delete operation is assigned to the lowest
priority. Moreover, deletion is only performed once every
interval time (e.g. every 1 second). By doing this we prevent
race condition.

ToR Switch

‘ @; ¥

10 Servers

Fig. 5. Testbed Topology with 10 servers and ToR Switch.

V. EVALUATION

The performance of the proposed scheduling scheme is
evaluated via number of experiments in 10Gbps testbed as
well as large-scale network simulation using NS3 and
Facebook traces from [4,5]. The main metrics used for
evaluation are the average CCT and performance
improvement factor, which is described as follows:

Compared CCT)
Creek's CCT

If the improvement is greater (smaller) than one, Creek is
faster (slower).

Improvement =

The main findings are summarized below:

1. In the testbed experiment, Creek significantly reduces the
average coflows CCTs relative to TCP by up to 1.8% and
the average mice flows FCTs by up to 1.833%

2.In the simulation experiments, Creek outperforms
decentralized approaches such as Baraat, Per-Flow-Fair-
Sharing (FS), and Stream by up to 1.82x, while achieving
comparable outcomes with the centralized scheme Aalo.

A. Testbed Experiment

Prototype: Creek prototype is built on top of the existing
TCP implementation and synthesized as a loadable kernel
module in Linux. Then, we implement client and server
model to emulate multiple workers and receivers by utilizing
socket programming at the application level. In this model,
packets are transmitted from clients acting as workers to
server acting as receivers. Our prototype randomly generates
216 and 432 TCP flows with different sizes according to
heavy tailed distribution; then, these flows are randomly
clustered into 20 and 30 coflows respectively with each
coflow has 2 and 3 receivers. In this experiment, the TCP
kernel module is modified so that the coflow ID can be
inserted into the IP option field in TCP packet header [29].
Moreover, we used local memory to store coflow
information, such as total bytes sent.

Testbed: Figure 5 shows the testbed used in evaluation. It
consists of 12 datacenter-scale servers are connected together
via a ToR 48-port 1 Gigabit Ethernet switch (Pica8 P-3297)
and a control-plane 4-port 10 Gigabit Ethernet switch. The
ToR switch supports strict priority queuing with at most 8
classes of services queue [1]. Each server is a HUAWEI
RH1288 V2 with 24-core Intel(R) Xeon(R) CPU E5-2630 v2
@ 2.60GHz, 64G memory, a 2T hard disk, and Broadcom
BCMS5719 NetXtreme Gigabit Ethernet NIC. Each server
runs Ubuntu 14.04.2 LTS with Linux 4.0 kernel. In the ToR

2 Avg. CCTs Mice Flow
2
<
€ 9]
g IS
1 [
o 3 e
> —
o <%
Q S
£ =
0 0
1 2 1 2
Scenario Scenario

Fig. 6. Testbed experiment. Scenario 1: There are 30 coflows with each
coflow has 3 receivers and each receiver is serving 5 flows. Scenario 2:
There are 20 coflows with each coflow has 2 receivers and each receiver is
serving 2 to 3 flows.

switch, strict priority queues are enforced and packets
are classified based on the DSCP field [1,29].

Experiment: To evaluate Creek, we create two experimental
scenarios. In the experiments, 10 machines are running client
application sending data to a 11" machine running server
application. In the first one, the experiment is conducted by
starting 432 TCP flows which are classified into 30 coflows.
In the second one, 216 TCP flows are initiated to make up for
20 coflows. In both scenarios, to reflect a more realistic
environment, the 12 server is used to generate background
traffic using iperf, which is a popular Linux traffic generator,
at the speed of 500 Mbps (which is the equivalent of 50% of
the link capacity). This is a common traffic pattern seen in
many datacenters [11]. In both scenarios, we compare the
CCTs of our scheduling scheme to the CCTs of using regular
TCP [29]. This set of experiment is conducted using 8 priority
queues. Later in the section, we conduct another experiment
to measure the performance of using different number of
priority queues. One of challenges performing testbed
experiments is to generate sufficient traffic load that mimics
bursty traffic without causing Denial of Service (DoS) [29].
In our testbed, traffic with 435 connections or larger causes
Denial of Service.

The testbed results, as shown in Figure 6(a), demonstrate
that Creek, when compared to TCP, it can improve the
average performance by 1.8X and 1.533X in the first and
second scenario respectively. Specifically, the average CCTs
of 30 coflows with TCP is 14.9 and 9.73 milliseconds in the
first and second scenario respectively; on the other hand, the
average CCTs in our scheduling scheme is 8.1 and 6.47
milliseconds respectively. Similarly, Figure 6(b) depicts that
using our coflow scheduling also improve the average
performance of mice flows by 1.8x and 1.7X with 20 and 30
coflows respectively. This experiment shows that the
proposed scheme performs better than TCP, especially in
networks with higher traffic load.

B. Large Scale Simulation Experiments

To evaluate our proposed scheduling scheme in large
scale network, we develop a flow-level simulator where it
accounts for the coflow arrival and departure events at the
flow level. It updates the rate and remaining volume of each
flow when event occurs. We model a data center with 3465
hosts and 720 switches of 10 Gigabit (10G) link speed in Fat-
tree topology [30] of size k=24.

a) 2 .
18 M Fair-Share M Baraat M Stream Aalo
1.6

c 1.4

[}

€ 1.2

[J]

3 1

s

E

0.8
0.6
0.4
0.2
0

Il 1] v "

Group
16
b) M Fair-Share M Baraat M Stream Aalo
14
12
o
S 1
IS
Y o8
o
S
0.6
E
0.4
0.2
0
I I v v

Group

Fig. 7, Large scale experiments using (a) TPC-DS and (b) FB-Tao
benchmark.

I 11 11 v \Y
Size B 6MB-1GB 1GB-10GB 10GB-100GB | 100GB-1TB >1TB

Table 2. Five categories of coflow with different size in many-to-many
pattern (size B).

In simulation experiments, Creek’s performance is
compared to baseline Per-Flow-Fair-Sharing, Baraat [3],
Stream [27], and Aalo [5]. Per-Flow-Fair-Sharing (PFS)
mechanism is a scheduling scheme that divides the resource
capacity equally among flows traversing the same link, which
is also the baseline in our analysis. Baraat is a First in First
out with limited multiplexing scheme. Stream, is also a
decentralized scheduling scheme, which opportunistically
leverages coflow communication pattern.

Realistic traffic pattern and load. Creek is evaluated using
real traffic pattern and traffic load by replaying 526 coflows
from actual production traffic traces from 3000 servers in
Facebook production datacenter [4,5], which capture a one-
hour Hive/MapReduce trace. In our simulation, Equal-cost
multi-path routing (ECMP) [29] routing protocol, which is
used in datacenters to route and load balance network traffic,
is also used in the simulations. Moreover, TCP is the
dominant transport protocol in datacenter, hence we
implement rate limiters that acts like TCP for all the schemes,
except for Baraat whose rate limiter follow its design [3].

Traffic Pattern. To run the simulations, Cloudera’s
Industrial benchmark is used. Specifically, the TPC-DS
query-42 (TPC-DS) [4], and Facebook Tao (FB-Tao) [28,31]
traces are used to create many-to-many scenario (because
Facebook trace only consists of coflow with many-to-one).
We use these benchmarks and insights from

[3,4,19,23,24,31] to synthesize the original trace to generate
realistic trace of many-to-many pattern. The coflow sizes for
the many-to-many pattern is shown in table 2.

Scenario 1: TPC-DS benchmark. Figure 7(a) shows that
Creek is at least 1.82X better than Baraat and FS. And it
shows similar performance as the centralized scheme Aalo.
Creek also outperforms Baraat, FS, and Aalo in Group I by
almost 1.8X, 1.6x, and 1.2X, respectively. All in all,
compared to Baraat and FS, Creek is at least 1.83 X better and
Creek’s and Aalo’s performance are comparable.

Scenario 2: FB-Tao benchmark. Figure 7(b) shows that, on
average, Creek superceeds Baraat, FS, and Stream by 1.6X,
1.2X%, and 1.1X respectively. And, for small coflows, Creek
is only within 1% to Aalo. In conclusion, Creek is better than
both Baraat and FS, by at least 1.2X across all groups. This
is because Creek can achieve similar performance of Stream
but without its communication overhead. Creek also has
comparable performance to Aloa across the various groups.

Creek’s ability to quickly differentiate coflow according to
its states with information at sub-coflow level allows for its
superiority over Baraat and FS. This allows Creek to quickly
divert coflows and allocate appropriate resources earlier,
which avoids delay. In contrast, Baraat and FS severely suffer
longer delay. Moreover, by resorting the information
management to a third party, Creek achieves slightly better
performance compared to Stream, but with significantly
lesser communication overheads (i.e., 0(n — 1) as in IV).

On average, Creek’s overall performance is comparable to
a centralized scheme Aalo. This is because Aalo only realizes
a coflow is a mice coflow when it is completed; this means
mice coflow is processed together with larger coflow in Aalo.
Creek on the other hand is a sub-coflow based system, and
therefore mice coflow can be quickly recognized as soon as a
sub-coflow is competed. This enables Creek to prioritize
mice coflow before its completion and quickly separate it
from larger coflows, which results in lower CCTs. This
approach takes advantage of the fact that sub-coflows of a
mice coflow is typically small. For large coflows consisting
of many mice sub-coflows, one of the parents of mice sub-
coflows can recognize and separate it.

Finally, Aalo is performs better than Creek (by ~0.1X)
because it is a centralized scheme with global information
(i.e., Aalo can be more precise in distinguishing coflows with
similar characters, which benefits these two categories).
However, Creek compensate for this by achieving superior
performance in all categories compared to the decentralized
schemes.

VI. CONCLUSION

Creek is a decentralized coflow scheduler that aims to
minimize CCT for Many-to-Many communication patterns
and the communication overhead between receivers . The
results from both testbed and large scale network simulation
experiments show that Creek is a simple but effective
coordination between receivers can improve applications’
performance in datacenters. Creek outperforms decentralized
schemes like Baraat, FS, and Stream, and performs
comparably well to centralized schedulers like Aalo.

(1
(2]

(3]
[4]
(5]
(6]
[71
(8]
(9]
[10]
[11

[12
[13

[t

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

[32]

Reference
http://www.pica8.com/documents/pica8-datasheet-picos.pdf
S. Argawal, et al, , Sincronia: Near-Optimal Netwok Design for
Coflows”, ACM SIGCOM, 2018.
F. Dogar, et al, “Decentralized Task-Aware Schduling for Data Center
Networks”, ACM SIGCOMM, 2014.
M. Chowdhury, Y. Zhong, and 1. Stoica, ”Efficient Coflow Scheduling
with Varys”, ACM SIGCOMM, 2014.
M. Chowdhury and I. Stoica, “Efficient Coflow Schduling Without
Prior Knowldege”, ACM SIGCOMM, 2015.
M. Chowdhury, et al,”Managing Data Transfer in Computer Clusters
with Orchestra”, ACM SIGCOMM, 2011.
Y. Zho, et al, “RAPIER: Integrating Routing and Scheduling for
Coflow-aware Data Center Networks”, IEEE INFOCOM 2015.
Z. Huang, et al “Need for Speed: CORA Scheduler for Optimizing
Completion Time in the Cloud”, INFOCOM 2015.
Z. Qiu, et al, “ Minimizing the Total Weighted Completion Time of
Coflows in Datacenter Networks”, ACM SPAA, 2015.
M. Alizadeh, et al, “pFabric:Minimal Near-Optimal Datacenter
Transport”, ACM SIGCOMM, 2013.
M. Alizadeh, et al,“Data Center TCP (DCTCP)”, SIGCOMM, 2010.
S. Gawiejnowicz, “Time-Dependent Scheduling”, Springer 2008.
M. Alizadeh, et al., “CONGA: Distributed Congestion-Aware Load
Balancing for Datacenters:, ACM SIGGCOMM, 2014.
A. Greenberg et al., “VL2: a Scalable and Flexible Data Center
Network”, SIGCOMM 2009.
M. Chowdhury and I. Stoica, “Coflow: A Networking Abstraction for
Cluster Applications”, USENIX HotNets, 2012.
A. Munir, et al, “Friends, not Foes — Syntehsizing Exiting Transport
Strategies for Data Center Networks, ACM SIGCOMM, 2014.
T. Benson, A. Akella, and D. A. Maltz, “Network Traffic
Characteristics of Data Centers in the Wild”, ACM IMC, 2010.
J. Dean and S. Ghemawat, “MapReduce: Simplifed Data Processing on
Large Clusters”, USENIX OSDI, 2004.
M. Isard, et al, “ Distributed Data-Parallel Programs from sequential
Building Block”, EuroSys, 2007.
M. Zhaharia, et al., “Resilent Distributed Datasets: A Fault-Tolerant
Abstraction for in-Memory Custer Computing”, USENIX NSDI, 2008.
L. Wang and W. Wang, “Fair Coflow Scheduling without Prior
Knowledge”, IEEE ICDCS, 2018.
R. Chaiken, et al.”SCOPE: Easy and Efficient Parallel Processing of
Massive Dataset”, VLDB, 2008.
G. Malewicz, et al.,”Pregel: A System for Large-Scale Graph
Processing”, ACM SIGMOD, 2008.
Y. Low, et al., “Distrubted GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud”. PVLDB 2012.
W. Bai, et al, ”Information-Agnostic Flow Scheduling for Comodity
Data Centers”, USENIX NSDI, 2015.
P. Poupart, et al., “Online Flow Size prediction fo Improved Network
Routing”, IEEE ICNP, 2016.
H. Susanto, J. Hao, K. Chen, “Stream: Decentralized Inter Coflow
Scheduling for Datacenter Networks”, IEEE ICNP, 2016.
N. Bronson, et al, “TAO: Facebook’s Distributed Data Store for the
Social Graph”, USENIX ATC, 2013.
J. Kurose and K. Ross, “Computer Networking, a Top Down Approach
6" addition”, Pearson, 2013.
M. Al-Fares, A. Laukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture”, ACM SIGCOMM, 2008.
A. Roy, et al, “Inside the Social Network’s (Datacenter) Network,” in
ACM SIGCOMM 2015.
C., L, R., S.,” Introduction to Algorithm”, MIT Press, 2001.

