

Creek: Inter Many-to-Many Coflows Scheduling

for Datacenter Networks

Hengky Susanto1. Ahmed M. Abdelmoniem2 Hao Jin3 Brahim Bensaou4

 Huawei Tech.1 , HKUST2,4, Texas A&M University3

hengky_susanto@huawei.com1 amas@cse.ust.hk2 haojin@tamu.edu3 brahim@cse.ust.hk4

Abstract— In datacenter networks, many data transfers

usually constitute semantically a coflow group. Typically, a

coflow is considered completed when all transfers in a coflow

are completed, and hence the data and information are useful to

applications. That is why, applications’ performance are

optimized whenever the completion time at the level of a coflow

rather than the individual flows is minimized. The current

popular coflow scheduling algorithms are centralized based

approach, but they incur high overhead cost. The decentralized

approach in the Many-to-Many scenario also incurs high

communication overhead cost caused due to the communication

among the local controllers. Therefore, in this paper, we present

a coflow scheduling mechanism that aims to minimize the coflow

completion time for coflow with Many-to-Many communication

pattern. And by product the communication overhead costs are

minimized. Using a testbed implementation in our mini

datacenter and large-scale network simulation, we demonstrate

that our scheduling scheme improve the coflow completion time

on average by up to 1.8× compared to the baseline in both cases.

These are achieved while preserving compatibility with existing

commodity switches and network protocols.

I. INTRODUCTION

Network traffic in modern datacenters is often a result of

the communication requirements at the application level.

Recently, the term coflow provided a meaningful semantic

that translates application requirements to matrices which can

be understood at network level (e.g., the data plane layer). In

networking context, a coflow consists of a set of concurrently

active flows set to complete a specific data transfer started by

the application. Typically, the completion of data transfer of

all flows within the same coflow signifies the completion of

the communication stage for the application. Applications

strive to achieve faster completion of their communication

tasks which greatly depends on minimizing coflow’s

completion time (CCT). However, this dependency may lead

to inter coflow bottleneck, which can severely degrade the

performance at the application level.

To address the dependency problems, many recent

proposals puts this problem into the form of CCT

minimization. The popular approaches are usually designed in

centralized manner [4,5,6,7,8,9] where a single centralized

scheduler is responsible for scheduling the coflows of the

entire network. However, a high overhead cost is required for

maintaining such a centralized system. Alternatively, there are

various decentralized state of the art solutions. For instance,

Barat [3] requires switch modifications where the task of

scheduling coflows is performed at switches. However, lacks

access to coflow level information because switches only have

access to information at flow level, which leads to less optimal

outcome. In addition, because this decentralized solution

requires elaborate software modifications in the switches, it is

harder to deploy. Stream [27] does not require switch

modification but requires local controllers of the same coflow

to exchange information, which may result in communication

overhead cost. Moreover, decentralized schemes also

commonly suffer from sub-optimal outcome because of the

lack of a complete picture of coflow states and the inability to

achieve global coordination between the local controllers. In

this paper we present Creek: a decentralized inter coflow

scheduler for coflows with Many-to-Many communication

patterns without requiring hard modification and imposes

minimal communication overhead cost. Creek is designed to

resolve the challenges in decentralized scheduling systems,

while at the same time possessing key advantages of

centralized system. Creek is capable of acquiring a more

complete picture of coflow states and accomplishes an

approximate global coordination, achieves near optimal

performance, without the overhead cost of centralized

solutions.

The key to the solution depends on understanding the

communication pattern which provides insights to achieve the

objective of minimizing CCTs effectively. One-to-Many is a

pattern where a single node receives data transfer from many

senders and forms a single coflow [19,22,23,24]. Many-to-

Many is a pattern where many receivers receives data transfer

from many senders [18,20]. In other words, that is a single

Many-to-Many coflow consists of multiple Many-to-One

coflows, which is the focus of this paper.

In this paper, we present, Creek, our inter coflow

scheduler for coflow with Many-to-Many communication

pattern which acquires the necessary information on coflows

at receiver’s end. The scheduling policy is enforced and

communicated by leveraging existing network components

(e.g., functionalities that are commonly available in

commodity switches) and the mechanics of existing transport

protocol (e.g., TCP/IP). For inter coflows scheduling decision,

Creek employs Conditional Shortest Job First (C-SJF), where

coflow is scheduled based on the condition of coflow state in

SJF fashion. To reduce the communication overhead required

for the receivers of a coflow to communicate with each other,

Creek resorts the information management to a third party,

which can be a designated node that store coflow information.

In our performance analysis, we evaluate our solution

through actual testbed experiments and large scale simulation

experiments. In the testbed experiments, we implement Creek

and deploy the prototype in a mini datacenter testbed. This

also shows that the solution is production deployments

mailto:hengky_susanto@huawei.com1
mailto:amas@cse.ust.hk2
mailto:haojin@tamu.edu3
mailto:brahim@cse.ust.hk4

friendly. Moreover, the experiments demonstrate that Creek

outperforms the baseline by 1.8×. In the large scale

simulation, we evaluate Creek performance by replaying an

actual production trace of coflow traffic workload from a 3000

servers (150 racks) in Facebook production datacenter [4].

Specifically, the evaluation is performed by using widely

accepted traces from Facebook along with two benchmarks:

TPC-DS [5] query and Facebook’s Tao structure [28]. In our

evaluation, Creek superseeds both Baraat and the traditional

per-flow fair sharing scheme by 1.85× on average, and

achieves comparable performance with the centralized

scheme. As for mice coflow CCT, Creek is up to 28× better

than per flow fair sharing and up to 18× better than Baraat.

Here, Creek also achieves similar outcome with centralized

system. At last, finding in [4] shows that priority based

scheme follows diminishing return behavior, and in this paper

we provide an insight to this behavior through theoretical and

(testbed and simulation) experiment results.

Our contributions can be summarized as follows:

1. Propose a coflow scheduling scheme for coflows with

Many-to-Many communication patterns, which minimizes

the communication overhead between receivers .

2. Deploy our solution in our mini datacenter. Evaluate

solution in large-scale setting.

This paper is organized as follows. We present previous

related work in section II and the system model in section III.

Then, we describe Creek in section IV. Simulation results are

presented in section V, then concluding remarks in section VI.

II. RELATED WORK

One of the early works on this theme is Orchestra [6],

where the semantic among flows is accounted in the design of

the flow transfers optimization in datacenter. Sincronia [2],

Varys [4], Aalo [5], and NC-DRF [21] by prioritizing

smallest-total-size-first based approach in their scheduling

mechanisms which improved the performance in [6]. RAPIER

[7] extends [4] by incorporating routing algorithms into the

scheduling scheme.

Likewise, CORA [8] also extends the problem in [4] by

integrating the resources allocation solution into the flow

scheduling scheme. In later development, the authors of [9]

extended the problem in [4] and have taken into account the

importance level of different coflows. Then they reformulated

the problem into a weighted CCTs minimization problem. The

aforementioned schemes falls into the centralized scheduling

category that typically provide near optimal scheduling.

However, these approaches are critized for incurring very high

cost of centralized system management and are generally hard

to realize because they require significant switch

modifications and/or a complex control plane.

On the other hand, as an alternative, there is the

decentralized approach. In this approach, Baraat [3]

dominates as the state-of-the-art decentralized coflow

scheduling system. Baraat relies on various heuristics which

is based on a multiplexed First-In First-Out (FIFO) principles.

In Baraat, whenever large coflows are observed in the

network, Baraat improves the CCT by processing mice flows

in the background. Otherwise, mice flows are processed

according to the trivial FIFO scheduling. Even though, Baraat

proves to be effective, it has a few drawbacks. First, its

Fig. 1. Data Shuffle between mappers and reduces in Hadoop [18].

Flow size The length of a flow

Coflow size The sums of all flows in a coflow in bytes.

Coflow width The number of parallel flows in a coflow.

Coflow length Largest or longest flow in coflow in bytes.

Table 1. Terminology

Fig. 2. CDF plot: a) coflow size , b) length, and c) width from Facebook

datacenter [4], and d) coflow size in Bing, Microsoft datacenter [3].

Fig. 3. FatTree network topology [30].

scheduling decisions are made locally at switches which limits

the scheduler access to only flow level information. So, the

scheduler has an incomplete information about coflow states

and results in sub-optimal performance. Second, Baraat also

requires modifications to switches’ source code which makes

it not deployment friendly.

Stream [27] is another recently proposed decentralized

scheduler which opportunistically choose the receiver in

Many-to-One and Many-to-Many communication patterns.

However, since Stream requires its receivers of a same coflow

to communicate with each other for coordination, Stream has

high overhead communication cost. In our work, we adopt

different approach where we solve the general coflow

scheduling problem in decentralized manner for Many-to-

Many patterns, without requiring hardware modification with

minimal communication overhead.

III. SYSTEM MODEL

In this section, we discuss the coflow abstraction,

describe coflows in production, and the network model used

in the study.

a) b) c) d)

Coflow Abstraction. A coflow is generally characterized by

the number of its concurrent flows (width), its total

transferred bytes (size), and its longest flow in bytes (length).

These characteristics determine the state of coflow during its

lifetime. For example, a coflow state is known by tracking

the number of completed flows of the coflow, the number of

bytes transferred/received of the coflow, etc.

Coflows in Production. In this work [4], the authors observe

that coflow sizes follow a heavy trailed distribution. Even

though, in Facebook datacenter, large coflows of at least 10

Gb make 8% and ones of at least 1 Gb make 15% of all

coflows, they are responsible for 98% (99.6%) of the traffic,

respectively. This means that most coflows are small in the

size and contribute the least bytes to the network as shown in

Figures 2a, 2b, and 2c. This confirms to the findings in [3, 6]

from Microsoft’s datacenter, as shown in Figure 3d, which

shows that coflow sizes abide to the heavy tailed distribution.

Another work [14] which studied data-mining application and

found it also has a very heavy tailed distribution where 95%

of all data bytes come from flows larger than 35MB which

make for only 3.6% of all flows. This again confirms that data

mining application generates more small sized flows, but the

traffic in the network comes from few large sized flows.

Network Model. In this work, the Tree-based topology [3, 7,

8, 10, 25] like FatTree [30] (Figure 3) is considered. We

conduct the experiments in the testbed and NS-3 simulator

using FatTree topology. From the experiments, we find that

the processing and queuing times are significant in the

aggregation and core switches which confirms with the

findings in [10,11 25]. Moreover, we find that the bottleneck

has shifted from ToR switches and becomes more evenly

distributed among different layers. This is due to the high

speed NICs matching the speeds of core switch ports.

IV. SCHEDULING SCHEME

A. Problem Formulation

The problem for the offline case of coflow scheduling can

be formulated as follows: we have 𝑛 number of coflows in a

system numbered by 𝑐 = 1, 2, …, 𝑛. Then, the problem is

formulated as an optimization problem as follows.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑡𝑐

𝑛

𝑐=1
 , (1)

∑ 𝑥𝑓 ≤ ℬ𝑙

𝑓∈𝑙

, ∀𝑙 ∈ 𝐿, (1. 𝑎)

𝑤𝑓 ≤ 𝒯𝑤 , ∀𝑓 ∈ 𝑐, 𝑜𝑣𝑒𝑟 𝑡𝑐 , 𝑤𝑓 ≥ 0 (1. 𝑏)

The variable 𝑡𝑐 refers to the completion time of a coflow 𝑐 and

can be evaluated via the expression. 𝑡𝑐 = max(𝑡𝑓| ∀𝑓 ∈ 𝑐),

where 𝑡𝑓 refers to the completion time of a flow 𝑓. Put it

another way, 𝑡𝑐 is denotes the completion time of the slowest

flow in a coflow. First, constraint (1.a) ensures that the

aggregate flow of link 𝑙 does not exceed link capacity ℬ𝑙 .

Second, constraints (1.b) ensures that the starvation and

packet out-of-order problems are eliminated. It is also vital to

observe that the above formulation for CCTs minimization is

an NP-Hard problem [3,4] and is reducible to the well-known

Open Shop Problems [12].

B. Decentralized Coflow Scheduling Mechanism

Prior works focused on the many-to-one scenario with

the assumption that coflow size is unknown a priori. In this

paper, however, we address the more difficult many-to-many

scenarios.

Generally, Creek uses the C-SJF scheduler to reduce the

CCTs by simply giving priority to smaller coflows over larger

ones. In C-SJF, first the coflow size is compared to a

threshold 𝒯 at the receiver’s end. Then, if the coflow size

exceeds 𝒯, then the coflow priority is demoted. The problem

is coflow size is unknown a priori, hence prior size

measurement is not be possible. We resolve this by initially

assigning every coflow to the highest priority and the priority

is dynamically demoted based on the number of bytes

received for the coflow. The receiver then updates the

workers with the new priority values by piggybacking the

priority on the ACK packets.

Creek also takes into account the coflow condition when

deciding the priority (e.g.. the number of completed flows).

It also ensures compatibility with the commodity switches,

by performing the scheduling at the receiver’s end as the

information on coflow and its flows are readily available at

the receiver side.

 Creek enforces SJF by leveraging the multi queues

commonly available in the commodity switches, to realize a

multi-level feedback queue (MLFQ). As have been pointed

out in [5], MLFQ may result into the starvation of some flows

and Weighted Fair Queuing (WFQ) may provide a better

solution. In Creek, MLFQ is adopted because priority queues

provides better in-network prioritization and potentially

achieves lower CCT. Moreover, WFQ may introduce the out-

of-order problem for TCP flows. Having said that, later we

propose an algorithm that ensures starvation free operation

for Creek.

Coflow Priority Decision. Consider 𝐾 priority queues in the

commodity switches [1] and given coflow 𝑐, priority 𝑃𝑓
𝑘

denotes 𝑘𝑡ℎ priority queue assigned to flow 𝑓 ∈ 𝑐, such that

1 ≤ 𝑘 ≤ 𝐾. Then, the priority assignment is as follows: 𝑃𝑓
1 >

𝑃𝑓
2 > ⋯ > 𝑃𝑓

𝑘 > ⋯ > 𝑃𝑓
𝐾 , where 𝑃𝑓

1 is the highest priority and

𝑃𝑓
𝐾 is the lowest priority. Every 𝑃𝑓

𝑘 mirrors to a threshold 𝜏𝑘.

Not that, most of existing commodity switches only support

a maximum of 8 priorities queue [1]. Let 𝑃𝑓 denote the

priority assigned to 𝑓, such that 𝑃𝑓 = 𝑃𝑓
𝑘. Initially, all 𝑓 is

assigned to 𝑃𝑓
1, such that ∀𝑓 ∈ 𝑐, 𝑃𝑓 = 𝑃𝑓

1. Therefore, given

flow size 𝑥𝑓 ≥ 0, the priority 𝑃𝑓 is decided as follows.

Coflow management. In coflows that create many-to-many

communication patterns, the coflow typically may consist of

many sub-cofows. In such case, there would be many

receivers in a single coflow. Hence, sub-coflows of the same

coflow is considered as a single entity and the completion of

the coflow relies on the completion of all of its sub-coflows.

Some of the many scheduling challenges with this pattern in

decentralized settings are keeping track of the relationship

among sub-coflows of the same coflow, deciding the

appropriate priority values when coflow information is

sparse, and a sub-coflow may not know about some of the

other sub-coflows.

Fig 4. Coflow dependency 4(a and b), where each layer represents the

webserver, cache follower, cache leader, and database in Cloudera’ TPC-DS
(fig. 4c), and Facebook’s Tao Architecture (Fig 4.d).

To address these challenges, Creek utilizes shared-

storage to allow sub-coflows of the same coflow easily

exchange necessary status information with each other. In

other words, the receivers of the same coflow will share and

access the same data storage.

A task manager allocates a small amount of space at a

designated storage space in a server to every new coflow.

Thus, all receivers of this coflow use this storage to provide

information, such as updates and queries on the total bytes

have been sent. Hence, the number of communication within

a coflow can be reduced from 𝑂(𝑛2) down to 𝑂(𝑛 − 1),

where is 𝑛 denotes the number of receivers of a coflow.

However, one of the practical challenges is how to

synchronize receivers of a coflow, such that information can

be updated appropriately. This problem is known as race

condition in operating system. There are multiple receivers

sharing a common buffer but there is only one receiver that

can update the information. This problem is solved using

locking mechanism such as Mutex, a mutual exclusion based

scheme. Thus, only a single receiver with Mutex is allowed

to update and modify the information in the shared storage

space. We also utilize Mutex semaphore based locking

mechanism to resolve the race condition between receivers of

a coflow in our testbed implementation.

Starvation Mitigation. To resolve starvation, when the wait

exceeds a waiting threshold, worker of the starving flow

retransmits packets that have not been acknowledged with

higher priority assignment. The duplicate packets will be

dropped at the receiver by TCP [29] if there is any. By doing

so, the solution also avoids packet TCP out of order problem.

The process is repeated until the flow escapes the starvation.

Then, upon receiving a packet from the starving flow, the

receiver compares the priority of the recent sent packet with

the priority currently assigned to the starving flow. If it does

not match, then the receiver increases that coflow priority and

notifies the worker of the starving flow with new priority

through the ACK packet. As pointed in [25], ECN can help

in mitigating starvation, but it may accidently mark packets

from mice coflows, because ECN is not designed to be aware

of coflows

Setting threshold. The value of threshold is important in

determining the system performance. If the threshold is too

small or too large, packets of short flows may prematurely

experience queuing delay behind elephant flows. Although

threshold is commonly used in system design [3,4,10,25,28],

there is very little study on how threshold should be set, such

that system achieves optimality. We observe doing this does

not guarantee convexity, and therefore it is possible that this

is a non-convex problem (an NP-Hard problem).

Authors of [25] attempt to formulate threshold setting

into convex optimization problem, but it uses too many

constraints in the formulation, which is not realistic. From our

experiments, we derive two observations: (𝑖) Thresholds

should be able to quickly direct traffic into appropriate queue.

(𝑖𝑖) To mitigate starvation, the wait of the lowest priority

should not exceed TCP retransmission timeout (RTO) [29].

Using these two rules of thumbs, our threshold leads to very

minimal starvation in our testbed experiments. At this point,

however, the threshold is decided by using exhaustive search,

which may imply a higher overhead cost for larger systems.

We will further investigate setting of threshold using machine

learning techniques proposed in [26] in our future work.

Data structure. One challenge in implementing Creek is

keeping track of the amount of bytesent generated by a large

number of coflows. In practice, multiple coflows arrive and

complete the task. Thus, information on coflows must be

added or removed to the data structure when coflows start and

complete respectively. For this reason, the data structure must

be adaptive to the dynamics of start-complete cycle while at

the same time keeping the computation cost low (e.g. lookup

operation).

In our testbed implementation, we use two dynamic arrays

available in C++ library (e.g. vector) to track coflows and

sub-coflows’ bytesent. We assume that coflow ID is unique

globally is unique within a coflow. Then, Creek utilizes these

IDs as coflow index and the information is inserted such that

the IDs are sorted in increasing order, which is linear using

the existing technique. Since the structure is dynamic caused

by the start-complete cycle, straightforward hashing is not

suitable for lookup operation. To resolve this, Creek utilizes

binary based search algorithm [32], which is 𝑂(log 𝑛) and 𝑛

denotes the array size. This is possible because the array is

sorted.

Without careful coordination between inserting, deleting,

updating, and information retrieval operation, the system

may end up in a race condition where different threads are

competing to modify the same information or data structure.

This can result in inaccurate information update. For

example, two threads are performing simultaneous updates at

the same location in memory causing the new information to

only reflect one of the updates instead of both updates.

We mitigate this issue by utilizing strict priority queue

non-preemptive scheduling (SPQ-NS). Here, an operation

(e.g. delete, update, insert, or read) cannot be interrupted

when it is being performed even when there is an operation

in higher queue waiting to be performed. Operations in each

queue of SPQ-NS is performed in first-in-first-out order and

the coordination between operation is done using Mutex.

Here, information update and insert operations are assigned

to the highest priority, information retrieval is assigned to a

lower priority, and delete operation is assigned to the lowest

priority. Moreover, deletion is only performed once every

interval time (e.g. every 1 second). By doing this we prevent

race condition.

a) b) c) d)

Fig. 5. Testbed Topology with 10 servers and ToR Switch.

V. EVALUATION

The performance of the proposed scheduling scheme is

evaluated via number of experiments in 10Gbps testbed as

well as large-scale network simulation using NS3 and

Facebook traces from [4,5]. The main metrics used for

evaluation are the average CCT and performance

improvement factor, which is described as follows:

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝐶𝐶𝑇

𝐶𝑟𝑒𝑒𝑘′𝑠 𝐶𝐶𝑇
 (2)

If the improvement is greater (smaller) than one, Creek is

faster (slower).

The main findings are summarized below:

1. In the testbed experiment, Creek significantly reduces the

average coflows CCTs relative to TCP by up to 1.8× and

the average mice flows FCTs by up to 1.833×

2. In the simulation experiments, Creek outperforms

decentralized approaches such as Baraat, Per-Flow-Fair-

Sharing (FS), and Stream by up to 1.82×, while achieving

comparable outcomes with the centralized scheme Aalo.

A. Testbed Experiment

Prototype: Creek prototype is built on top of the existing

TCP implementation and synthesized as a loadable kernel

module in Linux. Then, we implement client and server

model to emulate multiple workers and receivers by utilizing

socket programming at the application level. In this model,

packets are transmitted from clients acting as workers to

server acting as receivers. Our prototype randomly generates

216 and 432 TCP flows with different sizes according to

heavy tailed distribution; then, these flows are randomly

clustered into 20 and 30 coflows respectively with each

coflow has 2 and 3 receivers. In this experiment, the TCP

kernel module is modified so that the coflow ID can be

inserted into the IP option field in TCP packet header [29].

Moreover, we used local memory to store coflow

information, such as total bytes sent.

Testbed: Figure 5 shows the testbed used in evaluation. It

consists of 12 datacenter-scale servers are connected together

via a ToR 48-port 1 Gigabit Ethernet switch (Pica8 P-3297)

and a control-plane 4-port 10 Gigabit Ethernet switch. The

ToR switch supports strict priority queuing with at most 8

classes of services queue [1]. Each server is a HUAWEI

RH1288 V2 with 24-core Intel(R) Xeon(R) CPU E5-2630 v2

@ 2.60GHz, 64G memory, a 2T hard disk, and Broadcom

BCM5719 NetXtreme Gigabit Ethernet NIC. Each server

runs Ubuntu 14.04.2 LTS with Linux 4.0 kernel. In the ToR

Fig. 6. Testbed experiment. Scenario 1: There are 30 coflows with each
coflow has 3 receivers and each receiver is serving 5 flows. Scenario 2:

There are 20 coflows with each coflow has 2 receivers and each receiver is

serving 2 to 3 flows.

switch, strict priority queues are enforced and packets

are classified based on the DSCP field [1,29].

Experiment: To evaluate Creek, we create two experimental

scenarios. In the experiments, 10 machines are running client

application sending data to a 11th machine running server

application. In the first one, the experiment is conducted by

starting 432 TCP flows which are classified into 30 coflows.

In the second one, 216 TCP flows are initiated to make up for

20 coflows. In both scenarios, to reflect a more realistic

environment, the 12th server is used to generate background

traffic using iperf, which is a popular Linux traffic generator,

at the speed of 500 Mbps (which is the equivalent of 50% of

the link capacity). This is a common traffic pattern seen in

many datacenters [11]. In both scenarios, we compare the

CCTs of our scheduling scheme to the CCTs of using regular

TCP [29]. This set of experiment is conducted using 8 priority

queues. Later in the section, we conduct another experiment

to measure the performance of using different number of

priority queues. One of challenges performing testbed

experiments is to generate sufficient traffic load that mimics

bursty traffic without causing Denial of Service (DoS) [29].

In our testbed, traffic with 435 connections or larger causes

Denial of Service.

The testbed results, as shown in Figure 6(a), demonstrate

that Creek, when compared to TCP, it can improve the

average performance by 1.8× and 1.533× in the first and

second scenario respectively. Specifically, the average CCTs

of 30 coflows with TCP is 14.9 and 9.73 milliseconds in the

first and second scenario respectively; on the other hand, the

average CCTs in our scheduling scheme is 8.1 and 6.47

milliseconds respectively. Similarly, Figure 6(b) depicts that

using our coflow scheduling also improve the average

performance of mice flows by 1.8× and 1.7× with 20 and 30

coflows respectively. This experiment shows that the

proposed scheme performs better than TCP, especially in

networks with higher traffic load.

B. Large Scale Simulation Experiments

To evaluate our proposed scheduling scheme in large

scale network, we develop a flow-level simulator where it

accounts for the coflow arrival and departure events at the

flow level. It updates the rate and remaining volume of each

flow when event occurs. We model a data center with 3465

hosts and 720 switches of 10 Gigabit (10G) link speed in Fat-

tree topology [30] of size k=24.

0

1

2

1 2

Im
p

ro
ve

m
en

t

Scenario

Avg. CCTs

0

1

2

1 2

Im
p

ro
ve

m
en

t

Scenario

Mice Flow

Fig. 7, Large scale experiments using (a) TPC-DS and (b) FB-Tao
benchmark.

 I II III IV V
Size B 6MB-1GB 1GB-10GB 10GB-100GB 100GB-1TB >1TB

Table 2. Five categories of coflow with different size in many-to-many

pattern (size B).

In simulation experiments, Creek’s performance is

compared to baseline Per-Flow-Fair-Sharing, Baraat [3],

Stream [27], and Aalo [5]. Per-Flow-Fair-Sharing (PFS)

mechanism is a scheduling scheme that divides the resource

capacity equally among flows traversing the same link, which

is also the baseline in our analysis. Baraat is a First in First

out with limited multiplexing scheme. Stream, is also a

decentralized scheduling scheme, which opportunistically

leverages coflow communication pattern.

Realistic traffic pattern and load. Creek is evaluated using

real traffic pattern and traffic load by replaying 526 coflows

from actual production traffic traces from 3000 servers in

Facebook production datacenter [4,5], which capture a one-

hour Hive/MapReduce trace. In our simulation, Equal-cost

multi-path routing (ECMP) [29] routing protocol, which is

used in datacenters to route and load balance network traffic,

is also used in the simulations. Moreover, TCP is the

dominant transport protocol in datacenter, hence we

implement rate limiters that acts like TCP for all the schemes,

except for Baraat whose rate limiter follow its design [3].

Traffic Pattern. To run the simulations, Cloudera’s

Industrial benchmark is used. Specifically, the TPC-DS

query-42 (TPC-DS) [4], and Facebook Tao (FB-Tao) [28,31]

traces are used to create many-to-many scenario (because

Facebook trace only consists of coflow with many-to-one).

We use these benchmarks and insights from

[3,4,19,23,24,31] to synthesize the original trace to generate

realistic trace of many-to-many pattern. The coflow sizes for

the many-to-many pattern is shown in table 2.

Scenario 1: TPC-DS benchmark. Figure 7(a) shows that

Creek is at least 1.82× better than Baraat and FS. And it

shows similar performance as the centralized scheme Aalo.

Creek also outperforms Baraat, FS, and Aalo in Group I by

almost 1.8×, 1.6×, and 1.2×, respectively. All in all,

compared to Baraat and FS, Creek is at least 1.83× better and

Creek’s and Aalo’s performance are comparable.

Scenario 2: FB-Tao benchmark. Figure 7(b) shows that, on

average, Creek superceeds Baraat, FS, and Stream by 1.6×,

1.2×, and 1.1× respectively. And, for small coflows, Creek

is only within 1% to Aalo. In conclusion, Creek is better than

both Baraat and FS, by at least 1.2× across all groups. This

is because Creek can achieve similar performance of Stream

but without its communication overhead. Creek also has

comparable performance to Aloa across the various groups.

Creek’s ability to quickly differentiate coflow according to

its states with information at sub-coflow level allows for its

superiority over Baraat and FS. This allows Creek to quickly

divert coflows and allocate appropriate resources earlier,

which avoids delay. In contrast, Baraat and FS severely suffer

longer delay. Moreover, by resorting the information

management to a third party, Creek achieves slightly better

performance compared to Stream, but with significantly

lesser communication overheads (i.e., 𝑂(𝑛 − 1) as in IV).

On average, Creek’s overall performance is comparable to

a centralized scheme Aalo. This is because Aalo only realizes

a coflow is a mice coflow when it is completed; this means

mice coflow is processed together with larger coflow in Aalo.

Creek on the other hand is a sub-coflow based system, and

therefore mice coflow can be quickly recognized as soon as a

sub-coflow is competed. This enables Creek to prioritize

mice coflow before its completion and quickly separate it

from larger coflows, which results in lower CCTs. This

approach takes advantage of the fact that sub-coflows of a

mice coflow is typically small. For large coflows consisting

of many mice sub-coflows, one of the parents of mice sub-

coflows can recognize and separate it.

Finally, Aalo is performs better than Creek (by ~0.1×)

because it is a centralized scheme with global information

(i.e., Aalo can be more precise in distinguishing coflows with

similar characters, which benefits these two categories).

However, Creek compensate for this by achieving superior

performance in all categories compared to the decentralized

schemes.

VI. CONCLUSION

Creek is a decentralized coflow scheduler that aims to

minimize CCT for Many-to-Many communication patterns

and the communication overhead between receivers . The

results from both testbed and large scale network simulation

experiments show that Creek is a simple but effective

coordination between receivers can improve applications’

performance in datacenters. Creek outperforms decentralized

schemes like Baraat, FS, and Stream, and performs

comparably well to centralized schedulers like Aalo.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

I II III IV V

Im
p

ro
ve

m
en

t

Group

Fair-Share Baraat Stream Aalo
a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

I II III IV V

Im
p

ro
ve

m
en

t

Group

Fair-Share Baraat Stream Aalob)

Reference
[1] http://www.pica8.com/documents/pica8-datasheet-picos.pdf

[2] S. Argawal, et al, , Sincronia: Near-Optimal Netwok Design for

Coflows”, ACM SIGCOM, 2018.

[3] F. Dogar, et al, “Decentralized Task-Aware Schduling for Data Center
Networks”, ACM SIGCOMM, 2014.

[4] M. Chowdhury, Y. Zhong, and I. Stoica, ”Efficient Coflow Scheduling

with Varys”, ACM SIGCOMM, 2014.
[5] M. Chowdhury and I. Stoica, ”Efficient Coflow Schduling Without

Prior Knowldege”, ACM SIGCOMM, 2015.

[6] M. Chowdhury, et al,”Managing Data Transfer in Computer Clusters
with Orchestra”, ACM SIGCOMM, 2011.

[7] Y. Zho, et al, “RAPIER: Integrating Routing and Scheduling for

Coflow-aware Data Center Networks”, IEEE INFOCOM 2015.
[8] Z. Huang, et al “Need for Speed: CORA Scheduler for Optimizing

Completion Time in the Cloud”, INFOCOM 2015.

[9] Z. Qiu, et al, “ Minimizing the Total Weighted Completion Time of
Coflows in Datacenter Networks”, ACM SPAA, 2015.

[10] M. Alizadeh, et al, “pFabric:Minimal Near-Optimal Datacenter

Transport”, ACM SIGCOMM, 2013.

[11] M. Alizadeh, et al,“Data Center TCP (DCTCP)”, SIGCOMM, 2010.

[12] S. Gawiejnowicz, “Time-Dependent Scheduling”, Springer 2008.

[13] M. Alizadeh, et al., “CONGA: Distributed Congestion-Aware Load
Balancing for Datacenters:, ACM SIGGCOMM, 2014.

[14] A. Greenberg et al., “VL2: a Scalable and Flexible Data Center

Network”, SIGCOMM 2009.
[15] M. Chowdhury and I. Stoica, “Coflow: A Networking Abstraction for

Cluster Applications”, USENIX HotNets, 2012.

[16] A. Munir, et al, “Friends, not Foes – Syntehsizing Exiting Transport
Strategies for Data Center Networks, ACM SIGCOMM, 2014.

[17] T. Benson, A. Akella, and D. A. Maltz, ”Network Traffic

Characteristics of Data Centers in the Wild”, ACM IMC, 2010.
[18] J. Dean and S. Ghemawat, “MapReduce: Simplifed Data Processing on

Large Clusters”, USENIX OSDI, 2004.

[19] M. Isard, et al, “ Distributed Data-Parallel Programs from sequential
Building Block”, EuroSys, 2007.

[20] M. Zhaharia, et al., “Resilent Distributed Datasets: A Fault-Tolerant

Abstraction for in-Memory Custer Computing”, USENIX NSDI, 2008.
[21] L. Wang and W. Wang, “Fair Coflow Scheduling without Prior

Knowledge”, IEEE ICDCS, 2018.

[22] R. Chaiken, et al.”SCOPE: Easy and Efficient Parallel Processing of
Massive Dataset”, VLDB, 2008.

[23] G. Malewicz, et al.,”Pregel: A System for Large-Scale Graph

Processing”, ACM SIGMOD, 2008.
[24] Y. Low, et al., “Distrubted GraphLab: A Framework for Machine

Learning and Data Mining in the Cloud”. PVLDB 2012.

[25] W. Bai, et al, ”Information-Agnostic Flow Scheduling for Comodity
Data Centers”, USENIX NSDI, 2015.

[26] P. Poupart, et al., “Online Flow Size prediction fo Improved Network

Routing”, IEEE ICNP, 2016.
[27] H. Susanto, J. Hao, K. Chen, “Stream: Decentralized Inter Coflow

Scheduling for Datacenter Networks”, IEEE ICNP, 2016.
[28] N. Bronson, et al, “TAO: Facebook’s Distributed Data Store for the

Social Graph”, USENIX ATC, 2013.

[29] J. Kurose and K. Ross, “Computer Networking, a Top Down Approach
6th addition”, Pearson, 2013.

[30] M. Al-Fares, A. Laukissas, and A. Vahdat, “A Scalable, Commodity

Data Center Network Architecture”, ACM SIGCOMM, 2008.
[31] A. Roy, et al, “Inside the Social Network’s (Datacenter) Network,” in

ACM SIGCOMM 2015.

[32] C., L., R., S., ” Introduction to Algorithm”, MIT Press, 2001.

