Taming Latency in Data centers via Active
Congestion-Probing

Ahmed M. Abdelmoniem Brahim Bensaou Hengky Susanto
Computer Science and Engineering Department
Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
{amas, brahim} @cse.ust.hk hsusanto@cs.uml.edu

Abstract—In cloud environments, interactive applications de-
ployed in data centers often generate swarms of short-lived data
transfers (or flows) that face dramatic competition for the scarce
switch buffer space from other short-lived as well as the long-
lived flows. In the presence of bloated queues, such short-lived
flows often experience multiple packet losses per round-trip time
which often triggers the timeout-based loss recovery mechanism.
A direct consequence of this is an inflated application response
time that turns out to be orders of magnitude larger than what
it should be. A data center aware TCP protocol (DCTCP) was
designed as a new TCP specifically to address this issue, however,
it does not consider its co-existence with other transport protocol
(e.g., CuBIC and NewReno of Linux). In such situations, which
are abundant in multi-tenant data centers, the legacy large initial
congestion window sizes (e.g., 10 segments), induce multiple
packet losses at the onset of a TCP flow, which forces timeout
and even binary exponential backoff. In this paper, we propose
a novel Hypervisor-based, application-transparent approach for
active congestion probing to enable the hypervisor to infer on-
path congestion before the TCP connection is fully established for
new traffic to avoid such massive packet losses and timeout. The
so-called ProBoSCIS mechanism does not require any changes
to TCP, works with all versions of TCP and does not need any
special network hardware features other than those that exist in
today’s data center commodity switches. We show its effectiveness
via ns2 simulation and demonstrate its practical feasibility by
implementing and deploying it in a small-scale data center test-
bed. We show the significant reduction in application latency by
adopting ProBoSCIS in a series of real experiments.

Index Terms—Congestion Control, Active Probing, Latency,
TCP-ECN.

I. INTRODUCTION

Cloud-driven online data-intensive (COLDI) applications
built on top of distributed frameworks such as Hadoop [1] or
Spark [2] are legion in today’s data centers. Such applications
rely on distributed storage and parallel processing systems
to handle large data sets by dividing the workload among
many workers, collecting then the results in real time as
they are produced. In general their aim is to construct a
complete (or partial) result by aggregating the many fractions
of results obtained from the workers as quickly as possible,
to be able to respond to interactive users in near real time.
As a direct consequence, a timely data transfer is crucial to
building highly scalable and responsive COLDI applications.
Typically any missed deadlines, due to excessive network de-
lays or retransmissions due to packet losses, result in revenue

loss [3]. For example in search engines, missed deadlines
affect the quality of the search results, and eventually affect
the user perception of the search engine. Many solutions
were proposed to improve the performance of such delay-
sensitive applications in private data center networks by apply-
ing resource provisioning, or service preemptive prioritization
policies that enable higher priority applications to preempt
lower priority ones [4]. In practice, such approaches only
address the performance problems partially (if at all); in large-
scale multi-tenant clouds, the network is reportedly still the
major performance bottleneck for most distributed applications
as it is still not completely virtualized like other resources
(CPU cores, RAM, and Storage). In addition, while the afore-
mentioned approaches may improve the average latency of
the flows, the performance of such interactive applications
depends much more on the variation of the latency among
flows than just on the average or the median. For example,
it is found in many measurement studies in real data centers
(e.g., [3]) that the 90" percentile of the Flow Completion
Times (FCTs) can be three to 4 orders of magnitude worse
than the median or average.

TCP is still the predominant transport protocol in data
centers, and in the presence of small switch buffers a few
long-lived (elephant) flows or a swarm of short-lived (mice)
flows can quickly and fully occupy the available buffer space.
Hence, TCP flows face constantly bloated buffers and/or incast
congestion, which in conjunction with the very small RTTs
lead to excessive timeouts for some flows!. Noting that in
most “out-of-the-can” TCP implementations the timeout timer
is set to 150300 ms, the FCT of such flows is bloated
dramatically in data centers. Since, TCP is not designed to
handle these complex congestion events [5—8], DCTCP [6]
was among the most prominent TCP re-designs for data
centers. DCTCP has seen a wide adoption in private data
centers with homogeneous protocol stacks as it shows very
good performance in such environments. Nevertheless, it fails
to live up to the expectations in multi-tenant clouds with
heterogeneous TCP implementations that respond differently
than DCTCP to congestion [9]. For instance, DCTCP fails

ITypically small buffers and RTTs imply small flight sizes. In the presence
of multiple non uniform losses per flight, the flow is left with an insufficient
number of packets per flight to trigger recovery via three duplicate ACKs.

to handle packet losses that are caused by the use of large
initial congestion windows, which is standard in heterogeneous
networks. In this paper, we propose to develop a non-intrusive
system that brings the same performance gains shown by
DCTCEP in private clouds [6] to public and multi-tenant clouds
in a deployment friendly manner, without requiring changes to
the guest operating system nor to the network switches. More
precisely, we propose to solve the afore-mentioned issues
while fulfilling the following requirements: (R1) Our system
must help latency-sensitive applications improve their FCT;
(R2) It should not achieve this at the expense of elephant
flows (like in preemptive systems), i.e., it should not sensibly
degrade elephant flows performance; (R3) It must comply
with the VM autonomy principle by being transparent to the
tenants protocol stack. In other words, it should not modify
anything that is controlled by the tenant (e.g., TCP/IP stack
of guest VM). If changes are needed then they are applied
to the hypervisors that are fully under the control of the
cloud operator; (R4) and finally it must be simple enough to
appeal to vendors and data center operators alike; in other
words, it should not require changes to the expensive-to-
replace switching devices.

To achieve this we propose the so-called ProBoSCIS?
scheme that uses a simple live active probing at source connec-
tion to ascertain that enough buffer space is available along the
path to accommodate the imminent traffic with a standard ini-
tial TCP congestion window, or otherwise quenches the source
rate via the receiver window to ensure that the imminent traffic
avoids using the large initial congestion window. ProBoSCIS
is implemented is in the hypervisor at the sender and receiver
and relies only on ECN capability in the switches to probe for
congestion.

In the remainder, we highlight the source of performance
degradation in data centers in Section II, then present Pro-
BoSCIS mechanism in Section III. In Section IV, we dis-
cuss our simulation results, and present in Section VI, the
experimental results from a small testbed implementation of
ProBoSCIS. We discuss related work in Section VII, and
finally conclude the paper in Section VIIIL.

II. THE MAJOR SOURCE OF INCREASED LATENCIES

In this section, we use workloads extracted from production
data centers and conduct an experimental analysis of network
latencies. We focus on packet losses that lead to recovery via
Retransmission Timeouts (RTO), and call them in the sequel
Non-Recoverable Losses (NRL) as they cannot be recovered
via three duplicate ACKs (DUPACKSs). Because the TCP
minRTO in most existing operating systems is set between 100
and 300 ms (e.g., 200ms in Linux), NRLs inflate artificially
the latency by 3 to 4 orders of magnitudes compared to the
RTT usually experienced in data centers. These losses can
be described as follows: 1) Steady State Losses (SSL): The
tail-end packet(s) of some flows are dropped due to buffer

2ProBoSCIS stands for Probing the Buffer On Source Connection for Incast
Stalling.

08 | o B 0.8

0.6

CDF (%)
CDF (%)

0.4

0.2 . B 02

Workload2 =———
| Workloadl = - -

L L L L
1000 10000100000 1x10® 1x107 1x10% 100 1000

size (bytes) Inter-arrival (usec)
(a) CDF of flow size (b) CDF of inter-arrival time

Figure 1: Flow characteristics: (a) Actual Flow size distribution (b)
Inter-arrival times for various network load

overflow. In this case, the sender would not be able to receive
three DUPACKSs to trigger the Fast Retransmit and Recovery
(FRR) mechanism; and 2) Connection Setup Losses (CSL):
A burst of packets gets dropped due to the large initial sending
window of TCP. In this case, the sender may lose the whole
window or a large portion of it, leading to a similar result
as above. When these two cases take place in a congested
network, the sender is forced to wait for the expiry of the
RTO to re-transmit the lost packet(s), adding thus the waiting
time for RTO to the usually small nominal latency in data
centers.

To study these phenomena, we conduct a series of ns2
simulations to quantify the impact of SSL and CSL. More
specifically we seek to understand how well RED-ECN (base-
line) and Least Attained Service (LAS) [10] flow scheduling
(i.e,. LLDCT [11], pFabric [12], and PIAS [13]) perform
when these schemes experience SSL or CSL. We use a traffic
generator to statistically reproduce real-world workloads (e.g.,
Workload 1 is Websearch [6] and Workload 2 is Datamin-
ing [14]).

Fig. 1 shows the flow size and inter-arrival time distributions
for various loads. We use a spine-leaf topology of 9 leaf and
4 spine switches and 16 servers per rack to form a network
of 144 nodes. To stress the buffers in the network, we run
the experiments in 50% loaded network, with various over-
subscription ratios, ranging from 1 to 20, from the leaf-level
to the spine-level. We consider a flow to be a small flow if
its size is no larger than 100KB. Figure 2 shows the FCT
of small flows and the FCT of all flows for both Websearch
and Datamining workloads for various over-subscription ratios
from leaf level to spine level.

We conduct the same experiments again by varying the
initial congestion window size (/CW N D) in the range of [1-
20] for a fixed over-subscription ratio of 1:5. Figure 3 shows
the FCT of small flows and that of all flows for Websearch
and Datamining workloads. The results show that the FCT
of small flows is highly sensitive to the choice of initial
window, regardless of the congestion control scheme used,
whereas the FCT of large flows remains consistent over the
various initial window values for each scheme. This suggest
that fine tuning the initial window is necessary in order to
achieve better performance, especially for small flows, which
abound in data centers as shown in Figure la. In addition,
all the schemes other than RED-ECN and pFabric achieve
significant performance gains on the FCT in Websearch and
Datamining workloads. However, again the schemes imple-

/'

Average FCT in (s)
AVG FCT in (s)
"

0 5 10 15 20 0 5 10 15 20
Oversubscription Ratio Oversubscription Ratio
detep pfabric Ctep e pfabric
Proboscis === pias
lidct

d
Proboscis === pias
red =©= lidct red =©=

(a) Small Flows: Websearch (b) All Flows: Websearch

0.3 T T 4.5
4t

35 b
02 sl

0
L B 2.5 -pa
._ 4 2r

15+

1F

0.25

Average FCT in (s)
°
° =
[
AVG FCT in (s)

g
=
&

)

0 5 10 15 20 03 0 5 10 15 20
Oversubscription Ratio
CtCp el pfabric di
Proboscis === pias Proboscis === pias
lidct red =—Q= lidct
(¢) Small Flows: Datamining (d) All Flows: Datamining
Figure 2: Average FCT for small flows and all flows when over-

subscription ratio is varied in range [1, 20].

Oversubscription Ratio
Ctcp mefmm pfabric

menting packet-tagging achieve better results in Datamining.
The results also show that proportional ECN-marking schemes
such as DCTCP and ProBoSCIS are also effective.

These results show that the FCTs of small and large
flows for all schemes are sensitive to the offered load and
hence the buffer occupancy levels. However, all the schemes
other than RED-ECN achieve almost the same considerable
improvements in the FCT in Websearch workload. In stark
contrast, in Datamining their performance vary greatly because
of the heavily skewed flow size distribution with a majority
of small flows. Noticeably, the schemes implementing Least
Attained Service (LAS) achieve the best results. Similar gains
can also be easily obtained by adopting a simple ECN schemes
such as DCTCP.

Inspecting the traffic and results more closely, we find that:
SSL and CSL primarily affect the performance of small (mice)
flows; we also observe that LAS-based schemes perform
worse when they encounter SSL and CSL in highly congested
networks; and finally an improper TCP initial congestion
window setting may result in the degradation of mice flows
performance. These observations lead us to the question "How
to design a solution that minimizes the delay of mice flows
while being able to leverage sending at a large initial con-
gestion window without incurring losses”. The answer to this
question is a mechanism that can actively probe the network
to measure its congestion level and approximately choose an
appropriate size for the initial congestion window of flows
that are starting or restarting afresh. Other flows can handle
the congestion properly once congestion avoidance takes over.

As DCTCP is simple and has shown good performance
in homogeneous networks, we aim to propose an efficient
solution to improve the performance of DCTCP in handling
the SSL and CSL events. Our solution is transparent to the
guest VMs and assumes no extra available hardware other

0.8 ; ; ; ; 25
07
0.6 -
05
0.4 =
03 W 1 I 1
02 [1 05»?;,‘———-—_

01 (%

Average FCT (sec)
AVG FCT (sec)

0 5 10 15 20 0 5 10 15 20
Initial Congestion Window Initial Congestion Window
tcp == pfabric Ctcp == pfabric

Proboscis === pias Proboscis === pias
ldct

lidct red == red ==
(@) Small Flows: Websearch (b) All Flows: Websearch

0.25 ; ; r : 4.5
4 b
35+ B
3 Lo, 3 = s
25 q
2 b
15
4 1+
7 0.5
. . . . 0

5 10 15 20 0 5 10 15 20

Initial Congestion Window Initial Congestion Window
dCtep e pfabric tCp pfabric
Proboscis === pias Proboscis === pias
lldet red == lidct

(¢) Small Flows: Datamining (d) All Flows: Datamininig
Figure 3: Average FCT for small flows and all flows when ICW N D
is varied in range [1, 20]

o
= o
G ~

Average FCT (sec)
°
AVG FCT (sec)

o
=
&

)

o

than the commonly found features in commodity switches. The
proposed solution consist of the following two major elements:
1) to address SSL, source rates are quenched based on a
constant feedback information from the switches when pre-
configured thresholds are exceeded; and, 2) to address CSL,
the initial sending rate of the sources are scaled proportionally
to the current level of network congestion.

III. THE PROPOSED METHODOLOGY

In essence, ProBoSCIS is a simple mechanism that tries
to bring the basic principles of the well-known CSMA-CD
congestion management to the transport layer by: /) “Lis-
tening” to the network condition before injecting any new
traffic into the network; 2) Continuously monitoring the
network for worsening conditions to adjust the sending rates
accordingly. ProBoSCIS, is a hypervisor-to-hypervisor end-to-
end network probing scheme that detects imminent congestion
and throttles the senders by adjusting the receiver window field
in incoming ACKs. The mechanism relies on ECN marking
to convey the level of network congestion to the hypervisor.
As ECN is readily available in all modern commodity data
center switches, the scheme, does not require any change to the
switches. Furthermore, being hypervisor-based, the resulting
system does not require any changes to TCP itself and is
transparent to the guest VMs. ProBoSCIS is distributed on the
sender’s hypervisor and the receiver’s hypervisor. In normal
operation, in the case of SSLs, the sender injects normal TCP
data packets into the network, and the receiver echoes back
the congestion markings on the ACKs, the sender uses these to
estimate a level of congestion along the path and throttles the
TCP sender in the VM by applying a proportional adjustment
to the receiver’s window field of the incoming packet (ACK).
For the CSLs, as there are no packets in flight to elicit ECN
markings and no ACKs to echo them, we resort to injecting a
packet train from hypervisor-to-hypervisor before each SYN
packet. These packets act as probes to carry the ECN marks

to the receiver who will then apply directly the proportional
window resizing onto the outgoing SYN-ACK packet.

6:\Swv a:‘\SYNACK
ﬁfiﬁj 8o

S GYNAC
&, &) & S

&

Figure 4: TCP: from left to right, Syn; 1 RTT later Syn-Ack; In the
next RTT, Ack and data with initial cwnd worth of data;
leading to congestion and packet losses

6_‘SVN+pp Q“SYNACK* s_\Rleo*
G-svPP Besmack G
&SVN*PP SINACK &R\NND*
T e ST

Figure 5: ProBoSCIS: from left to right, Syn + probing packets; 1
RTT later Syn-Ack* with congestion-proportional rwnd*
value; Ack and rwnd* worth of data in the next RTT
leading to a buffer with enough room to absorb the burst

To illustrate the principles behind ProBoSCIS, we consider
the example of an elephant flow actively sending through
a bottleneck link on an end-to-end path when a set of N
new short-lived flows open connections through the same
bottleneck. Figures 4 and 5 put in contrast the sequence of
events for the CSL scenario in a pure TCP, versus TCP with-
ProBoSCIS. In the case of pure TCP, the new N flows take
one RTT to successfully open the TCP connection then send
immediately an initial Cwnd (ICWND)-worth of segments
over the next RTT. With most modern TCP implementations
being tailored for the Internet, this would amount to injecting
an extra Nx kMSS in one RTT (k = 10 in Linux). This
large burst of packets combined with the small switch buffers
in the presence of a bloated packet queue at the bottleneck
link results systematically in bursty packet losses that often
are only recoverable via timeout.

In contrast, ProBoSCIS handles this case as follows:
1) firstly, the use of ECN and flow throttling would avoid
the bloated queue as the continuous flow of ECN marks
received by the steady-state elephant flow (shown in red)
results in the associated sender’s hypervisor adjusting actively
and proportionally the receive window to limit its sending rate
in the VM; 2) secondly, to avoid the initial massive bursts, the
sender’s hypervisor injects a train of small sized Packet Probes
(PP) before the SYN packet. Their arrival at the receiver with
ECN markings enables this latter to adjust the rate of the
sender by adjusting the initial receive window of the SYNACK
packet on its way back.

A. ProBoSCIS Algorithms

ProBoSCIS has a sender and a receiver algorithms both
implemented in the hypervisor. The sender generates the
probes and implements the DCTCP congestion control logic,

while the receiver collects the probes and adjusts the RWND
of the SYN-ACK to determine the initial window used by
the sender. Algorithm 1 shows a summary of the sender’s
algorithm. It consists of the initialization (lines 1 — 3) of the
different parameters used by the algorithm, followed then by
the two main functions: i) Incoming packets event handler
(lines 5 — 12): this function deals with incoming SYN-ACKs
that are sent after the receiver-side released the SYN-ACK
with a proportional window. The corresponding stored copy
of the SYN in the SYN segments list is discarded and the
SYN-ACK is release to the source VM. After connection
setup, to enforce DCTCP, the incoming ECN-Echo packets
are counted and « is updated as in [6]. Based on this, the
receive window of the incoming ACKs is adjusted whenever
necessary. This fulfils the solution for the SSL problem; ii)
Outgoing packets event handler (lines 14 — 19): This function
is responsible for handling SYN segments arrival from the
VM. This activates the flow entry creation in the hypervisor
Flow_Table. The hypervisor then crafts a probe packet and
sends it vy times followed by the SYN. A copy of the SYN is
inserted to the SYN segments list; iii) Timeout Expiry Event
Handler (line 24 — 40): The handler goes through the SYN
packets in the list and for each packet, if the period since
their last departure 7' exceeds 1, then the probes are resent
where the amount increases linearly. Otherwise, if T' exceeds
(2, which suggests that the SYN has been lost, then both the
SYN and probes are resent. If 7" exceeds a pre-set maximum
trial time M AX_TIME then the flow entry is hard reset.

A summary of the receiver algorithm is given in Algo-
rithm 2. It consists of the initialization (lines 13) then the
following two main functions: i) Incoming packets event
handler (lines 5 — 12): this function deals with incoming
SYNs to open the connection, which activates the flow entry
in the Flow_Table. It also performs the counting of the
incoming ECN marked Probe Packets and updates parameter 3
accordingly. ii) Outgoing packets event handler (lines 14—19):
this function is responsible for handling SYN-ACK segments.
When it receives a SYN-ACK from the receiver VM, it checks
if enough probes have been received (i.e., more than K%
of the total ~) and scales the outgoing receiver window in
proportion to the received ECN marks in the probes (as
indicated by f.beta < k7). Otherwise, i.e., if too many probes
have been lost or the congestion level is too high, the receiver
window of the SYN-ACK is updated to 1 MSS only, which
assumes a severe congestion in the network. This behaviour
suffices as the solution for the CSL problem; iii) Timeout
Expiry Event Handler (line 19—26): The handler goes through
the SYNACKSs in the SYNACK segments list and for each
SYNACK if the congestion state conditions are satisfied then
the SYNACK is admitted without update. Otherwise, if a total
period since the last arrival of the SYNACK T exceeds f3
then it will not be kept any further and hence it is admitted
to the network.

Algorithm 1: ProBoSCIS Sender Algorithm

Algorithm 2: ProBoSCIS Receiver Algorithm

Input: o the moving average of the ECN echo packets
Input: <, the marking threshold to adjust source rate
Input: v the number of initial probes
Input: 8, 3> the timeouts for probes and SYN, respectively
/+ Initialization x/
Create flow cache pool;
Create flow table and reset flow information;
Create and initialize a timer to trigger every 1 ms;
Initialize and insert NetFilter hooks;
Function Incoming Packet Event Handler (Packet P)
key=hash(P);
f=Flow_Table.find(key);
/* SYNACKs: activate the flow if
necessary and clear the entry for
that flow */
8 if SYN(P) && ACK(P) then
9 if If.isactive() then f.activate_flow() ;
10 L f.synack_recv=now();

1 if f.is_active() && ECN_Echo(P) then

12 update . ECNEcho_count and f.«;

13 L if ACK(P) && f.ao > k1 then update f.« and
RWND using DCTCP logic ;

14 Function Outgoing Packet Event Handler (Packet P)

15 key=hash(P);

16 f=Flow_Table.find(key);

NS N B W N -

/* SYNs: active the flow, send the
probes and update SYN timestamp */
17 if SYN(P) then
18 f.activate_flow();
19 f.send_probes(v);
20 syn_list.insert(copy(P));
21 f.syn_sent=now();

22 Function Timer Expiry Event Handler
/* Timeout: Handle SYN packets waiting

in the queue */
23 for each P € syn_list do
24 key=Hash(P);
25 f=Flow_Table.find(key);
26 T = MAX(now () - f.syn_sent, 0);
27 ifT < MAX_TIME then
28 if T > 3, then
29 resend gamma x f.probe.etry probes;
30 f.probe_retry++;
31 else if T > 3, then
32 resend gamma x f.probe_retry probes;
33 f.probe_retry++;
34 resend SYN(P) one more time;
35 f.syn_retry++;
36 else
37 | stop SYN recovery and hard reset flow (f);

B. System Design and Implementation

ProBoSCIS sender and receiver algorithms are integrated
into a single hypervisor-level shim-layer implemented into the
data processing path of the data center end-hosts (servers).
This can be achieved in two ways: 1) by building a Ker-
nel Module that leverages the NetFilter framework [15] to
intercept and process the incoming and outgoing packets; or
2) by augmenting the hypervisor vswitch data-path (e.g., Open

Input: 8 the moving average of the ECN packets
Input: <. the marking threshold to adjust source rate
Input: 83 the timeouts for SYNACK, respectively
/* Initialization */
Create flow cache pool;
Create flow table and reset flow information;
Initialize and insert NetFilter hooks;
Function Incoming Packet Event Handler (Packet P)
key=hash(P);
f=Flow_Table.find(key);
/* SYNACKs: activate the flow if
necessary and clear the entry for
that flow */
7 if If.isactive() then f.activate_flow() ;
8 if SYN(P) then f.syn_recv=now() ;
9 if f.is_active() && ECN(P) then

A U B W N

10 f.ECN_count++;
1 if PROBE(P) then
12 | drop(P)

13 Function Outgoing Packet Event Handler (Packet P)

14 key=hash(P);

15 f=Flow_Table.find(key);

/* SYN-ACKs: activate the flow, update

Rwnd , and store a copy of the SYN =/
16 if SYNACK(P) then
17 f.activate_flow();
/* Update Rwnd of SYNACK if the
congestion level is below K2 */
18 if f.syn_probes > £ && f.3 < k2 then
19 TCP(P).rwnd=min(1 MSS, f.5 x ICW N D);
20 synack_list.insert(P)
21 else TCP(P).receive_window=1 MSS ;
22 f.synack_sent=now()

23 Function Timer Expiry Event Handler
24 for each P € synack_list do

25 key=Hash(P);

26 f=Flow_Table.find(key);

27 T = MAX(now() - f.synack_sent, 0);

28 if (f.probes < # && f.alphaz < k2) || T > 3 then
29 send(P) to source;

30 f.synack_sent = now(); synack_list.delete(key);

vSwitch [16]) with the packet processing functions.

In both cases, the module or the shim-layer would imple-
ment a combined version of the sender and receiver algo-
rithms. That is the module would implement one function for
incoming and outgoing processing which handles the events of
SYN, SYN-ACK, PP packets arrival and timer expiry handlers
(not shown in the algorithms for brevity). Note that in high
speed large volume data centers like public ones, the functions
can be built as custom-made network interface card.

In ProBoSCIS, all incoming and outgoing traffic to the
guest VMs pass through the ProBoSCIS module for further
processing. When the conditions for modifying either the
SYN-ACK at the receiver or the ACKs at the sender are met,
the receive window and checksum field are updated and the
new ACK or SYN-ACK is shown as ACK* and SYN-ACK*.
The ProBoSCIS module, at connection-setup, hashes the flow,

extracts the relevant information and stores it into a flow-table
indexed by the 4-tuples of the flow (i.e., source IP, dest. IP,
source Port and dest. Port). It stores various state information
including the window scale factor, number of probes, number
of non-ECN, ECN marks, and so on. Flow entries are cleared
from the table when the connection is closed (i.e., FIN is sent
by a guest VM). TCP checksum value is recalculated at the
end-hosts whenever the receive window field is updated (this
takes only one addition and one subtraction). The shim-layer
(or module) resides right above the NIC driver for a non-
virtualized setup and right below the hypervisor to support
VMs in cloud data centers.

C. Practical Aspects of ProBoSCIS

In addition to being relatively simple and able to resolve the
major causes leading to non-recoverable losses, ProBoSCIS
can achieve a good performance both in simulation and real
deployment. For example, ProBoSCIS can reduce the average
FCT by one order of magnitude and the tail FCT by two orders
of magnitude in our testbed experiments. Also, because it is
hypervisor-based, and avoids any network stack alteration in
the guest OS, it turns out to be readily deployable in existing
production data centers with minor interruption to critical
operations. We also expect it to be of low overhead and have
minimal impact on background traffic. This is because of the
small-sized, header-only packets used for probing are invoked
only during connection setup.

One major concern is the use of window scaling by TCP,
which according to TCP specifications [17], is achieved either
via a three-byte scale option added to the TCP header in all
segments or via a peer-to-peer exchange of window scaling
factor at the stage of connection-establishment during the SYN
segments exchange. However, most TCP implementations in-
cluding Linux adopt the latter approach to avoid the extra
network overhead (i.e., bandwidth) of the former. The scaling
may be unnecessary for networks with small bandwidth-delay
product (BDP) of 31.25Kbyte (i.e., 1 Gb/s for an RTT of
250ps). However, with the introduction of links operating at
higher speeds e.g., 40 Gb/s (i.e., BDP=1.25 Mbyte) and 100
Gb/s (i.e., BDP=3.125 Mbyte), the scaling factor becomes
necessary to utilize the bandwidth effectively. To this end,
both the sender and receiver Algorithms of ProBoSCIS capture
and store in the flow table the scale factor at the connection
establishment phase. As a result, both need to take this scaling
factor into account by explicitly rescaling the incoming and
outgoing receive window field, respectively before and after
applying the throttling. This operation takes a simple shift
operation.

Algorithms 1 and 2 rely on ECN markings to infer the con-
gestion in the network, hence the RED marking thresholds in
the switches have to be set appropriately [18?]. RED has been
criticized for its sensitivity to its parameter settings [19, 20].
RED specification [19] gives a guideline on choosing the RED
parameters, however the choice of the optimal settings greatly
depend on the attributes of the underlying network (e.g., link
speeds, buffer size and the RTT). Although, in this work, we

also rely on Weighted RED AQM for ECN marking which is
commonly available starting from the entry-level data center
switches, we use a simple and straightforward settings similar
to DCTCP [6] where we set the parameters to perform marking
based on the instantaneous queue occupancy exceeding the
quarter of the full buffer capacity. The reason being that
DCTCP AQM marking has been verified analytically [21] and
practically [6] in data center environments.

IV. SIMULATION ANALYSIS

We will first study the performance of ProBoSCIS via
simulation in relatively large data centers for different traffic
loads and flow size distributions. For this we use ns2 and
compare ProBoSCIS performance to that of the state-of-
the-art schemes. Later, we discuss the implementation and
experimental results from a deployment in a small test-bed.

We use a 4 spine-9 leaf topology using link capacities of
10 Gbps for the leaf (end-hosts) connections and per-hop link
delays of 50 us. The up-links are over-subscribed with a ratio
of 1:5 (the typical ratio in current production data centers is
in range of 3-20+).

We examine scenarios that cover Websearch and Datamin-
ing workloads, described previously, with and without back-
ground traffic. The flow size distribution for Websearch and
Datamining captures a wide range of flow sizes. The flows
are generated randomly from any host to any other host with
the arrivals following a Poisson process with different arrival
rates (M) to simulate various network loads. The network load
is varied (via lambda) in the range of (30% to 90%). For
TCP, the minRTO is set to the default RT'O,,;, of 200 ms
and the initial congestion window size is 10 MSS, with a
persistent connection used for successive requests. Finally,
buffer sizes on all links are set to accommodate 100 packets.
In ProBoSCIS, we set the number of probe packets v to 10 and
the ECN marking threshold to 20 packets. The performance
metrics are the FCT for small flows and that of all flows, and
the total number of timeouts experienced.

Figure 6 shows the average FCT and missed deadlines
for small flows, average FCT for medium flows as well as
the total timeouts for all flows in Websearch and Datamining
workloads. We note that in both workloads small flows ex-
perience a dramatic increase in the FCT when they timeout,
regardless of the mechanism in use — viz. congestion control
and AQM (RED DCTCP), information-aware (LLDCT and
pFabric), or information-agnostic packet scheduling (PIAS).

In contrast, ProBoSCIS helps small flows the most in
improving their FCT by reducing the number of timeouts.
We also note that overall FCT improves for all flows for two
reasons: i) ProBoSCIS actually does not distinguish mice and
elephant, thus, all flows benefit from its mechanisms, and ii)
small flows finish quicker, leaving network resources for larger
ones. We notice that Datamining workload, with almost 80%
of the flows having a size of less than 10KB, experiences lesser
timeouts overall, and DCTCP also can improve the FCT and
reduce timeouts due to its ability to maintain a small queue.
We have also conducted simulation experiments (not shown

Average FCT in (s)
o
° 5 ©
0w
——
\\
L
Max FCT in (s)
ok N o w B v oo o~

0.1 A/ L L 1 1 1 1
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Network load Network load
dctcp === pfabric dctcp =—p= pfabric
Proboscis === pias proboscis == pias
Iidct red =G lidct red =G

(a) Small Flows: Average FCT (b) Small Flows: Max FCT

0.012 T T T T T T T 0.22
0.011 0.2
0.01 ~ 0.18
0.009 0.16
0.008 |- 0.14 +
0.007 0.12
0.006 - 01
0.005 0.08
0.004 - 0.06
0.003 0.04
0.002 0.02

Average FCT in (s)
Max FCT in (s)

0.001 — - 0 —

20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100

Network \oac} Network load

detep s pfabric dCtep s pfabric
proboscis =l pias Proboscis === pias
lidct red == ldct red ==

(e) Small Flows: Average FCT (f) Small Flows: Maximum FCT

0.42 T T T T T T T 13000
12000
11000 -
10000
9000 |
8000 |
7000
6000 +

0.38
0.36
0.34
0.32

0.28
0.26
0.24
0.22

AVG FCT in (s)
o
w
LI S s e s s
\\\}
T R R R
Timeouts (#)

! L L L L L 5000 h L L L L L L
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100

Network load Network load
detep mmm pfabric detep pfabric
Proboscis === pias Proboscis el pias
lldct red === lidct red ===

(¢) Medium Flows: AVG FCT (d) All Flows: # of RTO

0.05

0.045 +

AVG FCT in (s)
Timeouts (#)

Y

PV VR VR VI

50 60 70 80 90 100

20 30 40 50 60 70 80 90 100 20 30 40

Network load Network load

ACtep pfabric dCtep s pfabric
Proboscis === pias Proboscis === pias
lidct red =—Q= lidct red =—Q=

(g) Medium Flows: AVG FCT (h) All Flows: # of RTO

Figure 6: Performance metrics with various network loads in the range (30%, 90%) for Websearch and Datamining workloads

here) to assess the sensitivity of ProBoSCIS to its parameter
v by varying the latter from 5 to 30 in steps of 5 and found
ProBoSCIS to achieve good performance for all these values.

V. LINUX KERNEL IMPLEMENTATION

In this section, we discuss the implementation details of
ProBoSCIS as a loadable kernel module in the Linux Kernel.

ProBoSCIS is a transparent shim-layer residing between the
TCP/IP stack (or VMs) and the link-layer (or Hypervisor). It
was implemented by leveraging the NetFilter framework [15]
which is an integral part of Linux OS. Netfilter hooks attach
to the data path in the Linux kernel just above the NIC driver.
This imposes no modifications to the TCP/IP stack of the host
OS nor guest OS and being a loadable kernel module, it allows
for easy deployment in current production data centers. The
module intercepts all incoming TCP packets destined to the
host or its guests right before it is pushed up to TCP/IP stack
handling (i.e., at the post-routing hook). First, the 4 identifying
tuples are hashed and associated flow index into the Hash
Table is calculated via Jenkins hash (JHash) [22]. Then, TCP
packet headers are examined and the flag bits are used to
choose the right course of action (i.e., SYN-ACK, FIN or
ACK) following the logic in Algorithms 1 and 2.

The module does not employ any packet queues to store the
incoming packets, it only stores and updates flow entry states
(i.e., ECN mark counts, arrival time and so on) on arrival
of segments. Since ProBoSCIS does not require fine-grained
timers in the micro-second scale, there is no overhead imposed
on the end-host due to timer frequency interrupt handling. We
collected various system load statistics during the experiments
with ProBoSCIS and there was no noticeable increase in the
load of the system due to ProBoSCIS. We could not replicate
LLDCT because the authors did not make the code publicly
available. Moreover, it requires floating-point operations not
supported in kernel space (e.g., the division k = e

max

In addition, ProBoSCIS uses a single timer for all active
flows (firing every 1 ms) to handle RTO events. These design
choices help reduce the load on the end-host servers and make
ProBoSCIS as lightweight as possible.

VI. TESTBED EVALUATION

We use a small-scale testbed consisting of 84 virtual servers
interconnected via 4 non-blocking leaf and 1 spine switches.
The testbed cluster is organized into 4 racks (rack 1, 2, 3 and
4) as shown in Figure 8. Each server per rack is connected
to a leaf switch via 1 Gbps link. The spine switch is realized
by running a “reference_switch” image on a 4-port NetFPGA
card [23] which is installed on a desktop machine. The servers
are loaded with Ubuntu Server 14.04 LTS with kernel version
(3.18) which implements a full version of DCTCP protocol.
The ProBoSCIS end-host module is invoked and installed
on the host OS whenever necessary only. Unless otherwise
mentioned, ProBoSCIS runs with the default settings (i.e.,
RTO of 4 ms and elephant threshold set to 100 KB?).

We again use the traffic generator to run the experiments
with realistic traffic workloads. In addition, we have installed
the iperf program [24] to emulate long-lived background
traffic (e.g., VM migrations, backups) in certain scenarios.
We setup different scenarios to reproduce a one-to-all and
all-to-all, with and without background traffic. In the one-to-
all scenario, clients running on the VMs in one rack send
requests randomly to any of all other servers in the cluster.
While in the all-to-all scenario, all clients send requests to
any of all other servers in the cluster. If background traffic is

3These two parameters aren’t shown in the algorithm for brevity. The RTO
is used to recover from lost PPs. The elephant threshold is an addition to
identify and excluded elephant flows from the window adjustment to reduce
processing overhead and keep the flow table small. The rationale is that such
flows usually are handled well by TCP via 3 DUPACKSs as they have a large
enough flight size.

2.5

"
N

._1
o
T
=200ms)
N

1.5

0.5

Average FCT with Errorbars (ms)
o
T

% of Flows Missed deadline (>

o

FCT Max (ms)
w
o
o
T

R, R, [e) ¢ O R
o %o‘pﬁ Yy Yy o N o
0, o,

0, 0,
SC/S SC/S
Scheme

(a) Small Flows: Average with Errorbar

10

Q%Qp gy,
>

Scheme

(b) Small Flows: Missed Deadlines

Y O, R 7 e’ e’ O,
Uy, - “No “No. o, Y8y Y8y o Ton
o o,

Sy, s °Scy, s OSQS

Scheme

(¢) Small Flows: Maximum FCT

100

200ms)
©

T T T T T T 77T

Average FCT with Errorbars (ms)
@
[=}
T
1

90
80
70
60
50
40
30
20
10

o

FCT Max (s)

o

o

T

1
% of Flows Missed deadline (>
OFEF NWAHMUONO®

< [2
/%’Vo Q&Vow sy O‘S'/Qp e
"6 Yos,
s Scrs
Scheme

(d) Small Flows: Average with Error Bar

30

B 2,
e S/Vo‘pr
o,

Scheme

(e) Small Flows: Missed Deadlines

le < O R 7 e’ e’ O,
Y8y Yy " 7 o &vow Y8y OG/QA e
o, > o,

2
°s¢/s OsC/S °Scy, s °S¢y, /s

Scheme

®) Small Flows: Maximum FCT

200ms)

25

20

15 +

10

5 |

Average FCT with Errorbars (ms)
[}
(=}
T

[
o
T
% of Flows Missed deadline (>

FCT Max (s)

o
A, A, <, <, 2 S
Mo "o, e Ve, Crep o
o
Sty °Scrs
Scheme

(g) Small: Average with Errorbar
Figure 7: Scenarios without background traffic:

P L R IE, (R

] (b) The actual testbe

Rack 3
(a) The testbed topology

Figure 8: Testbed evaluation of ProBoSCIS in a small data center

Rack 2 Rack 4

introduced, we run continuous long-lived iperf flows in an
all-to-all fashion to evaluate ProBoSCIS under sudden and
persistent network load spikes. We classify flows with sizes:
(small, <= 100K B), (medium, > 100K B and <= 10M B)
and (large, >= 10M B). The senders are created by creating
multiple virtual ports at the end-hosts and then an iperf or
Apache client/server process is binded to the vport. This allow
us to emulate traffic originating from any number of VMs
to ease creating scenarios with large number of flows in the
network.

The objectives are: i) to verify if ProBoSCIS, helps
short TCP flows finish faster with more flows meeting their
deadlines. ii) to verify how ProBoSCIS improves the per-
formance of tail-end flows whose completion determines the
quality of the result; iii) to quantify ProBoSCIS robustness
in unexpected network loads (i.e., background traffic).

R,
S/VOW,_
0,

Scheme
(h) Small: Missed Deadlines
(a-c) onet-to-all Websearch, (d-f) one-to-all Datamining and (g-i) all-to-all Websearch

CC/G

Ry R @ ¢ O,
e N o, Yo Usye, e
Yo, e

6,
OSC/S OSC/S OSC/S

Scheme

(i) Small Flows: Maximum FCT

A. Experimental Results and Discussion

One-to-All scenario without Background Traffic: We
report the the average FCT for small flows and that of all flows
and the number of small flows that missed their deadlines.
We set a hard deadline of 200ms for small flows however
we do not terminate the flow even if it misses the deadline.
The traffic generator is deployed on each single client running
on an end-host in the cluster and is set to randomly initiates
1000 requests to randomly picked servers on all other racks.
Figures 7a, 7b and 7c show the average FCT with errorbars,
missed deadlines and tail-latency (max) for small flows in
Websearch workload, respectively. While, Figures 7d, 7e and
7f, show the same metrics for the Datamining workload. We
can make the following observations: i) for all workloads,
ProBoSCIS helps small flows regardless of the TCP variant in
use, on both the average and variation of FCTs. Compared to
Reno and Cubic, ProBoSCIS reduces the average FCT of small
flows by ~ (47%,46%) for Websearch and ~ (91%,84%)
for Datamining. The achieved FCT of Reno and Cubic with
ProBoSCIS is quite comparable to that of DCTCP (yet this
latter must modify the TCP stack in the VM and can achieve
this feat only in homogeneous all DCTCP networks); ii) more-
over, for Websearch workload, ProBoSCIS reduces the missed
deadlines of Reno for short flows by ~ 22%. The missed
deadlines are marginally comparable in this case among the

different TCP variants. However, for Datamining workload,
ProBoSCIS improves the two metrics by ~ (80%, 75%) re-
spectively, which closes the missed-deadline gap with DCTCP
to only ~ (10%,15%) for Reno and Cubic, respectively.
iii) ProBoSCIS further improves the tail-end (i.e., maximum)
FCT of small flows. The improvements in the max FCT
for Reno and Cubic with ProBoSCIS are ~ (32%,32%)
and ~ (96%, 90%) in Websearch and Datamining workloads,
respectively. The improvements are significant for Datamining
because ProBoSCIS can spare short flows much waiting for
long RTOs.

All-to-All scenario without Background Traffic: In
this test run, all end-points are set to communicate with all
other end-points to evaluate the performance of ProboSCIS
in such complex traffic pattern. In this case, we do not start
the background traffic. We report similar metrics as in the
aforementioned cases. Figs 9a, 9b and 9c show the average
FCT with errorbars, missed deadlines and tail-latency for small
flows in the Websearch workload. The results suggest that
ProBoSCIS still improves the average FCT of small flows for
Webearch workload, regardless of the TCP congestion control
in use. As shown compared to Reno and Cubic, ProBoSCIS
reduces the average FCT of small flows by ~ (95%,96%)
and their missed deadlines by ~ (34%, 43%) for Websearch
workload. Moreover, the performance of all flows (including
medium and large) is improved by ~ (50%) compared to Reno
and the same tail performance for Cubic. In this scenario,
DCTCP misses its target by showing a large average FCT and
a large number of flows that missed their deadlines.

One-to-All scenario with Background Traffic: to put
ProBoSCIS under a true stress, we run the same one-to-
all scenario with all-to-all background traffic that shares the
network with the test workload. We report similar metrics
as previously. Figures 9a, 9b, 9c and 9d show the average
FCT, missed deadlines, maximum FCT for small flows as
well as average FCT for all flows in the Websearch workload.
The results suggest that ProBoSCIS still improves the average
FCT of small flows for Webearch workload regardless of
TCP congestion control in use. As shown compared to Reno
and Cubic, ProBoSCIS reduces the average FCT and missed
deadlines of small flows by ~ (95%,96%) for Websearch
workload. The tail-end performance of small TCP flows are
also improved by a factor of = (80%,87%). Not only mice
flows benefit in this scenario as shown by the figures, the
performance of all flows (including medium and large) is also
improved by factors of =~ (81%,85%). Moreover, DCTCP
can not perform well in scenarios where background traffic
exists in the network. For instance, Cubic with ProBoSCIS
can improve over DCTCP on average and max FCT of small
flows by ~ (85%, 88%), on missed deadlines by ~ 76% and
on average FCT of all flows by =~ 92%. This is significant.

In summary, the simulations and experimental results show
the performance gains achieved by ProBoSCIS are especially
welcome for small flows, that usually constitute the lion’s
share in data center traffic. In particular, they show that:
1) ProBoSCIS minimizes the variance of small TCP flows

completion times and reduce the missed deadlines; 2) it can
maintain its gains even in the presence of heavy background
traffic; and 3) ProBoSCIS can handle various workloads
regardless to the TCP variant in use.

VII. RELATED WORK

Several works have found, via measurements and analysis,
that TCP timeouts are the root cause of most throughput and
latency problems in data centers [25-27].

Specifically, [5] showed that frequent timeouts can harm
the performance of latency-sensitive applications. Numerous
solutions have been proposed. These fall into one of four
main approaches. The first mitigates the consequence of long
waiting times of RTO, by reducing the default minRTO to
the range 100 ps - 2 ms [5]. However, while very effective,
this approach affects the sending rates of TCP by forcing it to
cut the congestion window to 1; it relies on a static minRTO
value which can be ineffective in heterogeneous networks; and
it imposes modifications to TCP stack on the VM.

The Second approach aims at controlling queue build up
at the switches by either relying on ECN marks to limit the
sending rate of the VMs [6], or using receiver window based
flow control [7] or finally by deploying global traffic schedul-
ing [11-13]. These works achieved their goals and have shown
they could improve the FCT of short flows as well as achieving
high link utilization. However, they require modifications of
either the TCP stack, or introduce a completely new switch
design, and are prone to fine tuning of various parameters and
sometimes require application-side information.

The third approach is to enforce flow admission control
to reduce TimeOut probability. [28] has proposed ARS, a
cross-layer system that can dynamically adjust the number of
active TCP flows by batching application requests based on
the sensed congestion state indicated by the transport layer.
The last approach, which is adopted in this paper due to its
simplicity, and feasibility, is to recover losses by means of fast
retransmit rather than waiting for long timeout.

TCP-PLATO [26] proposed changing TCP state-machine to
tag specific packets using IP-DSCP bits which are preferen-
tially queued at the switch to reduce their drop-probability
enabling DUPACKSs to be received to trigger FRR instead of
waiting for timeout. Even though TCP-PLATO is effective
in reducing timeouts, its performance is degraded whenever
tagged packets are lost, in addition, the tagging may interfere
with the operations of middle-boxes or other schemes and most
importantly it modifies the TCP logic of sender and receiver.

Recent works [29, 30] also proposed implementing DCTCP
in the hypervisor to unify all TCP variants in data centers.
However, this approach tracks full DCTCP state information
and implements full state machine in the hypervisor. On the
other hand, ProbOSICS tries to minimize such overhead by
tracking the minimal amount of necessary state information.
Moreover, it implements only the TCP retransmission mecha-
nism.

200ms)

Average FCT with Errorbars (ms)

% of Flows Missed deadline (>

20 =

10 . -

0 _

Fene &5/‘/0#,’ Vo Vs, o oo, Voo Vo, g,
o6, % X \

%,
05, % o5, o,
Cls RO s Scrs

Scheme

Scheme
(a) Small: Average with Errorbar (b) Small: Missed Deadlines

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed ProBoSICS, a probing mech-
anism to examine congestion level during the connection
establishment phase prior to transmitting data. This allows
ProBoSICS to curb RTOs that are the result of various loss
events including SSL or CSL in highly congested network.
Simulation and test-bed implementation experimental results
demonstrate that ProBoSCIS is effective in improving the
performance of TCP flows in data centers and is practical.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce : Simplified Data
Processing on Large Clusters,” CACM, pp. 1-13, 2008.

[2] Apache.org, “Spark: Lightning-fast cluster computing,’
http://spark.apache.org.

[3] T. Hoff. Google: Taming The Long Latency Tail
- When More Machines Equals Worse Results.
Http://highscalability.com/blog/2012/3/12/google-taming-
the-long-latency-tail-when-more-machines-equal.html.

[4] M. Mattess, R. N. Calheiros, and R. Buyya, “Scaling MapRe-
duce Applications Across Hybrid Clouds to Meet Soft Dead-
lines,” in Proceedings of IEEE AINA, 2013.

[5] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe
and effective fine-grained TCP retransmissions for datacenter
communication,” in SIGCOMM, 20009.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP
(DCTCP),” in SIGCOMM, 2010.

[71 H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast con-
gestion control for TCP in data-center networks,” IEEE/ACM
Transactions on Networking, vol. 21, 2013.

[8] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats,
“Timely: Rtt-based congestion control for the datacenter,” in
SIGCOMM, 2015.

[9] S. M. Irteza, A. Ahmed, S. Farrukh, B. N. Memon, and I. A.
Qazi, “On the coexistence of transport protocols in data centers,”
in Proceedings of IEEE ICC, 2014. [Online]. Available:
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=68838 14

[10] I. A. Rai, G. Urvoy-Keller, M. K. Vernon, and E. W. Biersack,
“Performance analysis of las-based scheduling disciplines in a
packet switched network,” SIGMETRICS Perform. Eval. Rev.,
vol. 32, no. 1, pp. 106-117, 2004.

[11] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail,
M. S. Igbal, and B. Khan, “Minimizing flow completion times
in data centers,” in Proceedings of the IEEE INFOCOM, 2013.

FCT Max (s)

Average FCT with Errorbars (s)

e, R 37 37 2 Rey, Re o s O
o /Vo‘pro B/ 3/(1,3, Q7N Vo 0. o, S/ S/C‘*’f e

6 04, b,)
°Sey, /s 030/5 °Sc,s OSC/S

Scheme Scheme

(¢) Small Flows: Maximum FCT (d) All: Average with Errorbar
Figure 9: Performance metrics of one-to-all scenario using Websearch workload with background traffic

[12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]
(20]

(21]

[22]
(23]
[24]

(25]

(26]

(27]

(28]

[29]

(30]

M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “Deconstructing datacenter packet transport,”
in ACM HotNets, 2012.

W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-agnostic flow scheduling for commodity data cen-
ters,” in Proceedings of NSDI, 2015.

B. A. Greenberg, J. R. Hamilton, S. Kandula, C. Kim, P. Lahiri,
A. Maltz, P. Patel, S. Sengupta, A. Greenberg, N. Jain, and D. A.
Maltz, “VL2: a scalable and flexible data center network,” in
SIGCOMM, 2009.

NetFilter.org. NetFilter Packet Filtering Framework for linux.
Http://www.netfilter.org/.

OpenvSwitch.org. Open Virtual Switch project.
Http://openvswitch.org/.

J. Postel. (1981) RFC 793 - Transmission Control Protocol.
Http://www.ietf.org/rfc/rfc793.txt.

Pica8. Pica8 Pronto-3295 switch technical specifications.
Hittp://www.pica8.com/documents/pica8-datasheet-48x1gbe-
p3290-p3295.pdf.

RED, “Red parameters setting.” [Online]. Available: http:
/Iwww.icir.org/floyd/red.html#parameters

C. Hollot, V. Misra, D. Towsley, and Wei-Bo Gong, “A control
theoretic analysis of RED,” in INFOCOM, 2001.

M. Alizadeh, A. Kabbani, B. Atikoglu, and B. Prabhakar,
“Stability analysis of QCN,” ACM SIGMETRICS Performance
Evaluation Review, vol. 39, no. 1, p. 49, 2011.

B. Jenkins, “A hash function for hash table lookup,”
http://burtleburtle.net/bob/hash/doobs.html.

netfpga.org. NetFPGA 1G Specifications.
Http://metfpga.org/1G_specs.html.

iperf. The TCP/UDP Bandwidth Measurement Tool.
Https://iperf.fr/.

J. Zhang, F. Ren, L. Tang, and C. Lin, “Modeling and Solving
TCP Incast Problem in Data Center Networks,” IEEE TPDS,
vol. 26, no. 2, pp. 478491, 2015.

S. Shukla, S. Chan, A. S.-W. Tam, A. Gupta, Y. Xu, and H. J.
Chao, “TCP PLATO: Packet Labelling to Alleviate Time-Out,”
IEEE JSAC, pp. 65-76, 2014.

W. Chen, F. Ren, J. Xie, C. Lin, K. Yin, and F. Baker,
“Comprehensive understanding of TCP Incast problem,” in in
proceedings of INFOCOM, 2015.

J. Huang, T. He, Y. Huang, and J. Wang, “ARS: Cross-layer
adaptive request scheduling to mitigate TCP incast in data center
networks,” in IEEE INFOCOM, 2016.

K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter, J. Carter, and
A. Akella, “Ac/dc tcp: Virtual congestion control enforcement
for datacenter networks,” in SIGCOMM, 2016.

B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi,
N. McKeown, I. Abraham, and I. Keslassy, “Virtualized con-
gestion control,” in SIGCOMM, 2016.

