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Abstract—To meet the deadlines of interactive applications,
congestion-agnostic transport protocols like UDP are increasingly
used side by side with congestion-responsive TCP. As bandwidth
is not totally virtualized in data centers, service outage may occur
(for some applications) when such diverse traffics contend for the
small buffers in the switches. In this paper we present SDN-GCC,
a simple and practical software-based congestion control mecha-
nism that puts monitoring and control decisions in a centralized
controller and traffic control enforcement in the hypervisors on
the servers. SDN-GCC builds a congestion control loop between
the controller and hypervisors without assuming any cooperation
from tenants applications (i.e., transport protocol) ultimately
making it deployable in existing data centers without any service
disruption or hardware upgrade. SDN-GCC is implemented and
evaluated via extensive simulation in ns2 as well as real-life small-
scale test-bed experiment.

Index Terms—Congestion Control, Data Center Networks,
Rate Control, Open vSwitch, Software Defined Networks, Vir-
tualization

I. INTRODUCTION

To achieve tenants isolation and use resources more effec-
tively, resource virtualization has become a common practice
in today’s public datacenters. In most cases, each tenant is
provisioned with virtual machines with dedicated virtual CPU
cores, memory, storage, and a virtual network interface card
(NIC) over the underlying shared physical NIC. Typically,
tenants can not assume predictability nor measureability of
bounds on network performance, as no mechanisms are
deployed to explicitly allocate and enforce bandwidth in
the cloud. Nevertheless, cloud operators can provide tenants
with better virtual network management thanks to the recent
development in control plane functions. For example, Amazon
introduced ““Virtual Private Cloud (VPC)” [7] to allow easy
creation and management of tenant’s private virtual network.
VPC can be viewed as an abstraction layer running on top of
the non-isolated shared network resources of AWS’s public
cloud. Additionally, Software Defined Networking (SDN) [27]
is effectively deployed to drive inter- and intra-datacenter
communications with added features to make the virtualization
and other network aspects easy to manage. For example,
both Google [18] and Microsoft [15] have deployed fully
operational SDN-based WAN networks to support standard
routing protocols as well as centralized traffic engineering.
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On the other hand, the data plane in intra-datacenter networks
has seen little progress in apportioning and managing bandwidth
to overcome congestion, improve efficiency, and provide
isolation between competing (greedy) tenants. In principle,
isolation can simply be achieved through static reservation
[9, 14], where tenants can enjoy a predictable, congestion-
free network performance. However, static reservations lead to
inefficient utilization of the network capacity. To avoid such
pitfall, tenants should be assigned minimum bandwidth by
using the hose model [12] which abstracts the collective VMs
of one tenant as if they are connected via dedicated links to
a virtual switch (vswitch). In such setup, different VMs may
reside on any physical machine in the datacenter, yet, each VM
should be able to send traffic at its full rate as specified by the
vswitch abstraction layer. Such VMs should enjoy the allocated
rate regardless of the traffic patterns of co-existing VMs and/or
the nature of the workload generated by competing VMs.

The following are the necessary elements that can be
incorporated together for this purpose:

« An intelligent and scalable VM admission mechanism
within the datacenter for VM placement where minimum
bandwidth is available. To facilitate this, topologies with
bottlenecks at the core switches (such as uplink over-
subscription or a low bisection bandwidth) should be
avoided if possible.

« A methodology to fully utilize the available high bisection
bandwidth (e.g., a load balancing mechanism and/or multi-
path transport/routing protocols).

« A rate adaptation technique to ensure conformance of
VM sending rates to their allocated bandwidth, while
penalizing misbehaving ones.

A number of interesting research works have investigated
more or less successfully the first two elements of this
framework [5, 11, 13, 30]. In [5, 13], highly scalable network
topologies offering a 1:1 over-subscription and a high bisection
bandwidth were proposed. These topologies are shown to
be easily deployable in practice and can simplify the VM
placement at any physical machine with sufficient bandwidth
to support the VM. Efficient routing and transport protocols
[11, 30] were designed for DCN to achieve a high utilization
of the available capacity. Finally, in terms of traffic control,
much of the recent work [6, 34] focused on restructuring TCP
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Figure 1: Goodput of the tagged TCP flow and aggregate goodput
of the two flows (navy blue line). At t=0 competitor and at
t=5 tagged TCP flow starts while at t=10 competitor stops

congestion control and its variants to efficiently utilize and fairly
share bandwidth among flows (in homogeneous deployments).
However, these techniques fall short of providing true isolation
among tenants (e.g., a tenant may gain more bandwidth by
opening parallel connections or by using aggressive transport
protocol like UDP). It is common, in mutli-tenant environments,
that non-homogeneous transport protocols co-exist leading
to starvation of the cooperative ones [17]. To illustrate this
problem via simple means, we conduct a simulation in which
we compare the performance of a tagged ECN-enabled TCP
NewReno flow that competes with i) another TCP flow of
same type, ii) another TCP variant designed for data centers
(i.e., DCTCP which deployed in a number of datacenters [20]),
and; iii) another congestion-agnostic transport protocol (i.e.,
UDP which is used in memcached clusters of Facebook [25]).
Similar to what was already known from the Internet, Fig. 1
shows that, homogeneous TCP deployments in data centers
can achieve fairness, in contrast to heterogeneous deployments.
We observe that TCP losses 64% and 84% of its allocated rate
to DCTCP and UDP, respectively.

In this paper, we propose a SDN-based generic congestion
control (SDN-GCC) mechanism to address this issue. We first
introduce the idea behind SDN-GCC in Section II, then discuss
our proposed methodology and present SDN-GCC framework
in Section IV. We show via ns2 simulation how SDN-GCC
achieves its requirements with high efficiency in Section VI.
The testbed experiments are presented in Section VII'. Finally,
we conclude the paper in Section VIII.

II. TRANSPORT ISOLATION PROBLEM

With the recent introduction of a significant number of
new transport protocols designed for DC networks in addition
to the existing protocols, the following three challenges
emerged: i) most such protocols are agnostic to the nature
of the VM aggregate traffic demands leading to inefficient
distribution of the network capacity among competing VMs
(for instance a VM could gain more bandwidth by opening
parallel TCP connections); ii) many versions of TCP co-
exist in DC networks (e.g., TCP NewReno/MacOS, compound
TCP/Windows, Cubic TCP/Linux, DCTCP/Linux, and so on),
leading to further inefficiency in addition to unfairness, and; iii)
many DC applications rely on UDP to build custom transport
protocols (e.g., [25]), that are not responsive to congestion

!'Simulation and implementation code can be requested from the authors and
later they will be made publicly available at http://ahmedcs.github.io/SDN-GCC

signals, which exacerbate the unfairness to the point of causing
starvation. While such problems have been revealed in the
context of Internet two decades ago, recent studies [17, 20]
have confirmed that such problems of unfairness and bandwidth
inefficiency also exist in DCNs despite their characteristically
small delays, small buffers and different topologies from those
found in the Internet. As a consequence, a new solution to
the problems of congestion in DC networks is needed. Such
solution must be attractive to cloud operators and cloud tenants
alike.

In particular, with the emergence of software defined
networking, we see an opportunity to invoke the powerful
control features and the global scope provided by SDN to
revisit the problem from a different perspective with additional
realistic design constraints. As such we propose a solution with
the following intuitive design requirements: R1) simple enough
to be readily deployable in existing production datacenters;
R2) agnostic to (or independent of) the transport protocol;
R3) requires no changes to the tenant’s OS (in the VM) and
makes no assumption of any advanced network hardware
capability other than those available in commodity SDN
switches; R4) creates a minimal overhead on the end-host.

All of today’s communication infrastructure from hardware
devices to communication protocols have been designed with
requirements derived from the global Internet. As a result
to cope with scalability and AS autonomy, the decentralized
approach has been adopted, relinquishing all intelligence to end
systems. Yet, to enable responsiveness to congestion regardless
of the transport protocol capabilities and in time-scales that
commensurate with data center delays, it is preferable to adopt
centralized control as it provides a global view of congestion
and is known to achieve far better performance [22, 24]. Never-
theless to reconcile existing hardware and protocols (designed
for distributed networks) with the centralized approach, we
impose design requirements R1-R4 on SDN-GCC. As such the
core design of SDN-GCC relies on outsourcing the congestion
control decisions to the SDN controller while the enforcement
of such decisions is carried out by the end-hosts hypervisors.

III. RELATED WORK

A number of recent proposals implemented different system
designs for cloud network resources allocation. “Seawall” [33]
is a system designed solely for sharing network capacities
by achieving per-VM max-min weighted allocations using
explicit end-to-end feedback messaging for rate adaptation.
Seawall adds new encapsulation protocol to network stack
on top of transport headers which incurs a large processing
and messaging overhead as well as rendering it into a non
middlebox-friendly solution. “Secondnet” [14] is a system
proposed to divide network among tenants via rate limits
enforcements, however, it only supports static bandwidth
reservation among tenants’ VMs. “EyeQ” [19] adopts per-VM
max-min weighted fair sharing in the context of a full bisection
bandwidth datacenter topology. Its downside is the design
assumption that congestion is limited to first and last hops.
“RWNDQ” [1, 3] is a fair-share allocation AQM for TCP in data
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Table I: Variables tracked at the shim-layer and the Controller

Variable name (Shim-Layer)
source

Description
IP address of source VM

vport virtual port connecting VM
rate The allocated sending rate
bucket The capacity of the token bucket in bytes
tokens The number of available tokens
senttime The time-stamp of last transmission

Variable name (application) Description

Figure 2: SDN-GCC high-level system design: 1) congestion point;
2) network statistics; 3) congestion tracking; 4) congestion
notification; 5) rate adjustment.

centers, however it resolves contention among flows using TCP
as their transport. “HyGenICC” [23] is an IP-based congestion
control mechanism that relies on a collaborative information
exchange between hypervisors. The solution involves the use
of ECN marking as congestion indication which is aggregated
and fed back between hypervisors to enable network bandwidth
partitioning through dynamic (adaptive) rate limiters. In spite
of the appealing performance gains achieved. In general these
mechanisms have some or all of the following drawbacks:

1) Security: Introduction of new protocols or using reserved
headers (e.g., HyGenICC uses IP reserved bits known as
“Evil-bit” [10] which was used for security testing.

2) Overhead: Flow tracking and feedback packets crafting
on a per VM-to-VM basis adds burden to the hypervisor’s
processing overhead.

3) Locality: The lack of global information about dynamic
network conditions which allows hypervisors to react only
to local VM-to-VM congestion.

4) Mutli-Path: VM-to-VM packets are not guaranteed to
take same path when multipath routing (e.g., ECMP) is in
use, leading to under estimation of VM-to-VM congestion.

Recently, SDN has seen growing number of deployments for
intra/inter data center networks [4, 32]. SDN was also invoked
to address complex congestion events such as TCP-Incast in
data centers [2, 24]. Hence, we address the aforementioned
pitfalls of former schemes by taking advantage of the rich
information, flexibility and global scope of SDN framework.
We show that SDN-GCC is a middle-box and mutli-path
friendly solution that achieves similar design goals with
lesser deployment overhead and lower CPU and network
overhead. This is achieved by leveraging simple rate limiters
and incorporating a network-aware SDN controller towards
building a dynamic adaptive system. The essence of SDN-
GCC is to address the increasing trend and shift to SDN
infrastructures while keeping traditional transport protocols
unchanged in current production data centers.

IV. PROPOSED METHODOLOGY

Figure 2 shows SDN-GCC'’s system design which is broken
down into two parts: a network application that runs on the
SDN controller (network OS). It is responsible for monitoring
network states by querying the switches periodically via SDN’s
standard southbound API and signalling congestion; and a

SWITCH List of the controlled SDN switches
SWITCHPORT List of the ports on the switches
DSTSRC List of destinations to sources pairs
IPTOPORT List of IP to switch port pairs
MARKS ECN marks reading of for each switch port

hypervisor-based shim-layer, that is responsible of enforcing
per-VM rate control in response to congestion notification by
the control application. The following scenario sketches the
SDN-GCC cycle: 1) Whenever the total incoming load exceeds
the link capacity, the link (in-red) becomes congested implying
that senders are exceeding their allocated rates. 2) SDN-
switches sends to the network OS periodic keep-alive and
statistics through the established control plane between them
(e.g., OpenFlow or sFlow). Whenever necessary, the switch
would report the amount of congestion experienced by each
output queue of its ports. 3) The SDN-GCC application co-
located with the network OS (or alternatively communicating
via the north-bound API) tracks congestion events in the
network. 4) SDN-GCC application communicates with the
SDN-GCC shim-layer of the sending servers whose VMs
are causing the congestion. 5) SDN-GCC shim-layer takes
corrective action by adjusting the rate-limiter of the target VM.

We start from a single end-host (hypervisor) connecting all
VMs where bandwidth contention happens at the output link
(i.e., when multiple senders compete to send through the same
output NIC of the virtual switch). The hypervisor needs to
distribute the available NIC’s capacity among VMs and ensure
compliance of the VMs’ weights with the allocated shares.
Hence it employs a mechanism to apply rate limiters on a per-
VM basis. Table I shows the variables needed to implement
a per-VM token-bucket rate limiter. Ideally, when a virtual
port becomes active, its variables are initialized and the NIC’s
nominal capacity is redistributed among the rate limiters of
currently active VMs by readjusting the rate and bucket size
of all active VMs’ token buckets on that NIC. Then we need
to extend the allocation of single hypervisor to account for
the in-network congestion caused by a network of hypervisors
managing tenants’ VMs.

In practice, congestion may always happen within the data
center network, if the network is over-subscribed or does
not provide full bisection bandwidth. SDN-GCC in an effort
to account for this limitation, relies on readily available
functionality in SDN switches to convey congestion events
to the controller. To elaborate more, SDN-GCC controller can
keep a centralized record of congestion statistics by periodically
collecting state information from the switches as shown in
Table I. ECN marking is chosen as a fast live congestion
indication to signal the onset of possible congestion at any
shared queue. However, Usage of RED and ECN marking
could be avoided if drop-tail AQM keeps statistics of backlog



exceeding a certain pre-set threshold.

SDN-GCC application running on top of the network OS,
keeps record of each network-wide state information (e.g.,
congestion points). Hence, it can infer the bottleneck queues
based on this information and make intelligent decisions
accordingly. Whenever necessary, it sends special congestion
notifications to the shim-layer to adjust the sending rate of the
affected VM. Upon receiving any congestion notification The
shim-layer reacts by adjusting VM’s rate-limiter proportionally
to the congestion level in the network and gradually increases
the rate when no more congestion messages are received.

V. DESIGN AND IMPLEMENTATION

As explained above, SDN-GCC needs two components:
shim-layer at the servers and the control application that runs
on top of the network OS. These mechanisms can either be
implemented in software, or hardware or a combination of
both as necessary. We simplified the design and concepts of
SDN-GCC so that the built system is able to maintain line rate
performance at 1-10Gb/s while reacting quickly to deal with
congestion within a reasonable time.

A. SDN-GCC End-Host Shim-Layer

SDN-GCC shim-layer processing is described in Algorithm
1. The major variables it tracks are the rate, the number of
tokens and the depth of the bucket variables per-VM per-NIC
where the per-VM rate limiters are implemented as counting
token buckets where virtual NIC j has a rate R(i,j), bucket
depth B(i,j) and number of tokens 7'(7, j) on physical NIC
1. In addition, the shim-layer will also translate the received
congestion message from the controller on a per-source basis.

Initially, the installed on-system NICs are probed and the
values of their nominal data rate R(4), and bucket size B(i)
are calculated. Thereafter, when the first packet is intercepted
from a new VM, NIC capacity is redistributed and a equal-
share of capacity “E/(i)” is calculated. The new value E(%) is
used to re-distribute the allocated rate for each active VM and
then the new VM is marked active? As shown in Table I, the
state of the communicating VM is tracked only through token
bucket and congestion specific variables. Shim-layer algorithm
1 is located at the forwarding stage of the stack, on arrival or
departure of a packet P, it detects the packet’s outgoing port
7 and incoming port ¢. Before packet departure, the available
tokens 7'(i, j) is refreshed based on the elapsed time since the
last transmission. The packet is then allowed for transmission
if T(i,7) > size(pkt), in which case size(pkt) is deducted
from T'(i, 7). Otherwise. the packet is simply dropped?. The
shim-layer intercepts only the special congestion message.

For each incoming notification, the algorithm cuts the
sending rate in proportion to the rate of marking received
capped by R,,;, which is a parameter set by the operator.

2Typically, after a certain time of inactivity (e.g., 1 sec in our simulation),
the variables used for VM tracking are reset and the rate allocations are
redistributed among currently active VMs.

3Packets can be queued for later transmission, however, this approach incurs
large overhead on the end-hosts

Algorithm 1: SDN-GCC Shim-layer

1 Function Normal_Packet_Arrival (P, src, dst)
2 /x 1 is NIC and j is VNIC index */
3 T, 5) =T(i,7) + R(i,7) x (now() — f.senttime);
4 | T(,j) = MIN(B(i,j),T(i,3));

5 if T(i,j) > Size(P) then

6 T(i,5) =T(i,j) — Size(P);

7 L senttime(i, j) = now();

8 else

9 L Queue until token regeneration OR Drop;

10 Function Control_Packet_Arrival(P, 1, j)

11 if Packet has congestion notification message then
12 marks = int(msg);

13 if marks > 0 then

14 congdetected(i, j) = true;

15 elapsedtime = now() — congtime(i, j);
16 markrate = #ﬁm,

17 R(i,j) = R(3,j) — (markrate x scale(C));
18 R(Zvj) = Mam(RmznaR(Zvj))’

19 congtime(i, j) = now();

20 else

21 L Send to normal packet processing;

22 Function Rate_Update_Timeout()

23 forall i in NICs and j in VNICs do

2 if now() — senttime(i, j) > 1sec then

25 active(i, j) = false;

26 L redistribute NIC capacity among active flows;

27 forall i in NICs and j in VNICs do

28 if now() — congtime(i, j) > T, then
congdetected(i, j) = false ;
29 if congdetected(i,j) == false then

R(i,7) = R(3, §) + scale(C);
R(i,j) = MIN(E(i), R(i, j));

30
31

Hence, as sources cause more congestion in the network,
the amount of marks received increases and as a result the
sending rates of such sources decreases proportionally until
the congestion subsides. When Congestion messages become
less frequent or after a pre-determined timer 7, elapses, the
algorithm starts to gradually increase the source VMs’ rate
conservatively. The rate is increased until it reaches “E(i)”
or congestion is perceived again leading to another reduction.
Function scale(C)” is used to scale the amount of rate increase
and decrease proportional to the NICs rate and to smooth out
large variations in rate dynamics.

B. SDN Network Application

SDN-GCC relies on a SDN network application to probe for
congestion statistics on a regular basis from the queues of the
SDN switches in the network. The application sends notification
messages towards the VMs that are causing congestion on



a given queue. This is accomplished by crafting a special
message with those particular VMs as destinations with the
data indicating the amount of marking they have caused. These
messages are never delivered to the VMs and are actually
intercepted by the shim-layer in the hypervisor. For simplicity,
we assume that each of the involved VMs contribute equally to
the congestion and hence the marks are divided equally among
source VMs. SDN-GCC Controller shown in Algorithm 2 is an
event-driven mechanism that handles two major events: packet
arrivals of unidentified flows (miss-entries) from switches and
congestion monitoring timer expiry to trigger warning messages
to the involved sources if necessary.

1) Upon a packet arrival: extract the necessary information
to establish source to destination SDT'SRC' relationship
and destination to port relationship /PTOPORT'. This
is necessary to establish associations between congested
ports and corresponding sources. In addition, The timer for
congestion monitoring is re-armed if it was not already.

2) Congestion monitoring timer expiry: for each switch
sw, the controller probes for marking statistics through
OpenFlow or sFlow protocols by calling function
readmarks(sw). The new marking rate of each switch
port p is calculated. For each port, if there are new
markings (due to congestion), then the controller needs
to advertise this to all related sources. Thus we first
retrieve the destination list of this port via function
getalldst(sw,p) and then for each destination retrieve
the sources using getallsrc(dst). The controller now
piggybacks on any outgoing control message or crafts an
IP message consisting of an Ethernet Header (14 bytes),
an IP header (20 bytes), and a payload (2-byte) containing
the number of ECN marks that have been observed in
the last measurement period, divided by the number of
sources. This message is created for each source concerned
(sending through the port p experiencing congestion) and
sent with the source IP of the dest. VM and dest. IP of
the source VM (which allows the shim-layer to identify
the apporporiate forwarding ports of source VM).

C. Implementation and Practical Issues

Any traffic sent by the VM in excess of its share can either
be queued or simply dropped and resent later by the transport
layer. In the former case, an extra per-VM queue is used for
holding the traffic for later transmission whenever the tokens
are regenerated. We tested both approaches and the queuing
mechanism turned out to achieve marginally better performance
which did not motivate its need in view of the complexity it
adds. If ECN marking is not in use end-to-end, all outgoing
data packets must be marked with the ECT bit. In addition,
the shim-layer needs to clear any ECN marking used to track
congestion before delivering the packets to the target VMs.

SDN-GCC is a distributed mechanism among the network
application and the shim-layer with very low computational
complexity and can be integrated easily in any network whose
infrastructure is based on SDN. Due to recent advancement of
memory speeds, the throughput of internal forwarding (e.g.,

Algorithm 2: SDN-GCC SDN application

1 Function Packet_Arrival(P, src, dst)
2 if 1 Ppacket then

3 BB+ 1

4 SDTSRCIP.src] = P.dst;

5

6

IPTOPORT|[P.src] = P.in_port;
if Timer is not active then start CM_Timer(T;) ;

7 Function Congestion_M onitor_Timeout()
forall sw in SWITCH do

9 sw_marks = readmarks(sw);

10 forall p in SWITCH_PORT do

1 a= MARKS[sw|[p] — sw_marks[pl;

12 MARKS[sw][p]| = MARK S[sw][p] + «;
13 if « > 0 then

14 DSTLIST = getalldst(sw,p) ;

15 forall dst in DSTLIST do

16 SRCLIST[dst] = getallsrc(dst);

17 B=8 + size(SRCLIST]dst]);

18 if totalsrc > 0 then

19 m=%;

20 forall dst in DSTLIST do

21 forall src in SRCLIST[dst] do
2 msg = MSG (m , dst, src),
23 L send msg to src;

24 | Restart CM_Timer(T;);

OpenvSwitch (OvS)) of commercial desktop/server is 50-100
Gb/s, which is fast enough to handle 10’s of concurrent VMs
sharing a single or few physical links. Hence, the overhead of
the shim-layer functions added to the OvS would not occupy
much of the CPU. In addition, the shim layer at the hypervisor
requires operations of O(1) per packet, as a result the additional
overhead is insignificant for hypervisors running on DC-grade
servers. The network application is also of low complexity
making it ideal for fast response to congestion (within few
milliseconds time scale).

In multi-path routing, the SDN application with global view
can evaluate congestion on a path-by-path basis. Consequently,
the shim-layer can adapt rates to each path which it can identify
via 5-tuple hash of the packets. Finally, the control plane
communications in SDN networks is typically out-of-band
i.e., different from the data plane [29], hence fast reaction
to congestion is possible and notification messages are not
interrupted by in-network middle-boxes.

VI. SIMULATION ANALYSIS

In this section, we study the performance of the proposed
scheme via ns2 simulation in network scenarios with a high
bandwidth-low delay. We examine the performance of a tagged
VM that uses New-Reno TCP with SACK-enabled. The tagged
TCP connection competes with other VMs running similar
New-Reno TCP, DCTCP, or UDP in four cases: /) a setup
that uses RED AQM with non-ECN enabled TCP; 2) a setup
that uses RED AQM with ECN enabled TCP; 3) a setup
that uses HyGenICC as the traffic control mechanism [23];
and 4) a setup that uses proposed SDN-GCC framework. For



)

»
=1
S

Competitor (Mean Thr) <2

s 2 Competitor (Mean Thr)
\2‘ 1000 = = TCP (416) é 1000\ = = TCP (416)
= |l e DCTCP (319) A | DCTCP (375) i
2 goof| -+ upP(153) 2 gool| -+ UDP(359) !
=) °© i
3 3 i
£ 600 = 600 i
£ 1 i = H
3 400 3 400} !
z z !
3 3 ———
§ 200 L 4 g 200t '
L] . ~
N Ny : S ! f ,
0 5 10 25 30 0 5 10 15 20 25 30

Time (s)

(a) non-ECN-enabled TCP

Time (s)
(b) ECN-enabled TCP

1200, 1200,

s Competitor (Mean Thr) & Competitor (Mean Thr)
= 1000H == TCP (406) —— = 1000{| == TCP (407)  —
= |l o DCTCP (410) i Pea | DCTCP (407) ]
2 goo}| '+ UDP(410) i 2 goo}| -+ uDP (405) i
[=} 1 [=] H
3 i 3 i
2 600 i £ 600 1
= ! = i
3 400 i 3 400 i
[ [ i
° hel
S 200 I g 200
8 i ] §
g i S §
= 0 = 0

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Time (s) Time (s)
(¢) HyGenICC (d) SDN-GCC

Figure 3: Goodput and mean of tagged TCP flow while competing
with 3 senders using either TCP, DCTCP or UDP.

HyGenICC, there is a single parameter settings of timeout
interval for updating flow rates which should be larger than
a single RTT, in the simulation this value is set to 500 us
(i.e., 5 RTTs). However, in the case of SDN-GCC, timeout
interval for congestion monitoring and reporting application

of the controller is set to a large value of Sms (i.e., 50 RTTs).

In all simulation experiments, we adjust RED parameters to
achieve marking based on instantaneous queue length at the
threshold of 20% of the buffer size.

A. Simulation Setup

We use ns2 version 2.35 [26] which we patched to include the
different mechanisms. We use in all our simulation experiments
link speed of 1 Gb/s for stations, small RTT of 100 us and
the default TCP RT'O,;, of 200 ms. We use a single-rooted
tree (Dumbell) topology with single bottleneck link of 1Gb/s
at the destination, and run the experiments for a period of 30
sec. The buffer size of the bottleneck link is set to be more
than the bandwidth-delay product in all cases (100 Packets),
the IP data packet size is 1500 bytes.

B. Simulation Results and Discussion

For clarity, we first consider a toy scenario with 4 elephant
flows (the tagged flow and 3 competitors). In the experiments,
the tagged FTP flow uses TCP NewReno and competes either
with 3 FTP flows using TCP newReno, DCTCP or 3 CBR
flows using UDP. Competitors start and finish at the 0" and
20t"sec respectively, while the tagged flow starts at the 10*"sec
and continues until the end. Hence, from 0 to 10s (period 1)
only the competitors occupy the bandwidth, from 10s to 20s
(period 2) the bandwidth is shared by all flows, and from 20s to
30s (period 3) the tagged flow uses the whole bandwidth. This
experiment demonstrates work conservation, sharing fairness,

and convergence speed of SDN-GCC compared to other setups.

Figure 3 shows the instantaneous goodput of the tagged TCP
flow along with the mean goodput with respect to its competitor

(in the legend, the optimal average goodput of tagged TCP
would be OMb/s for period 1, 250Mb/s for period 2, 1000Mb/s
for period 3 and 416Mb/s for all the periods). As shown in
Figure 3a, without any explicit rate allocation mechanisms and
without ECN ability, TCP struggles to grab any bandwidth
when competing with DCTCP and UDP flows as DCTCP and
UDP are more aggressive. Figure 3b suggests that ECN can
partially ease the problem, however the achieved throughput
reaches the allocated share only when the competitor uses the
same TCP protocol. This can be attributed to the fact that
TCP reacts conservatively to ECN marks unlike DCTPC which
reacts proportionally to the fraction of ECN marks. Simulation
with a static rate limit of 250 Mb/s (fair-share), show that
a central rate allocator assigning rates per VM can achieve
perfect rate allocation with no work-conservation (Utilization
is 250 Mb/s in period 3). Figures 3¢ shows that HyGenICC
[23] thanks to its distributed and live adaptive rate limiters, can
respond effectively to congestion events. Finally, Figures 3d
suggest a similar result as HyGenICC can be achieved with the
help of a regular control messaging from a central controller
whenever necessary. Hence, SDN-GCC can efficiently leverage
its global view of network status to dynamically adjust the rate
limiters controlling the competing flows that cause congestion
and yet achieve work conservative high network utilization.
SDN based schemes are questioned for their scalability which
is currently under active research [21]. Figures 4a , 4b and 4c
suggests that SDN-GCC can scale well with an increasing
number of senders. The tagged TCP flow and competing flows,
starting at 10", adjust their rates due to the incoming control
messages when the controller starts observing congestion in the
network. The adjustment messages trigger flow rate changes
up and down until they reach the equilibrium point where
sources start oscillating slightly around the target share of
~ 180~ 125Mb, ~ 180 ~ 62.5Mb and ~ 1&2 ~ 31.25Mb
respectively. In SDN environments, controller delays are
of major concern. To study the effect of controller delay,
Figures 4d, 4e and 4f shows the same 4 senders scenario
but with smaller control delay of 10 RTTs and larger delay
of 100 RTT and 500 RTT. Fig 4d shows that to achieve
faster convergence smaller switch-controller-hypervisor delay is
always preferable. Figs 4e and 4f shows that flows oscillations
and convergence period increases as the controller delay
increases to 10ms and 50ms. This behavior is expected.

VII. TESTBED IMPLEMENTATION OF SDN-GCC

We implemented SDN-GCC Control application as a sep-
arate application program in python for any python-based
controller (e.g., Ryu [31] SDN framework in our testbed). Since,
OpenStack along with other popular cloud and virtualization
management software use OpenvSwitch [28] as their end-host
(hypervisor) networking layer. We implemented SDN-GCC
shim-layer as a patch to the Kernel datapath module of OvS.
We added the token-bucket rate limiters and the congestion
message handler (i.e., the shim-layer) in the packet processing
pipeline in the datapath of OvS. In a virtualized environment,
OvS forwards the traffic for inter-VM, Intra-Host and Inter-Host
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Figure 5: A real testbed for experimenting with SDN-GCC framework

communications. This leads to an easy and straightforward way
of deploying the shim-layer at the end-hosts by only applying
a patch and recompiling the OvS kernel module, introducing
minimal impact on the operations of production DC networks
with no need for a complete shutdown. Specifically, deployment
can be carried out by the management software responsible
for admission and monitoring of the data center.

We set up a testbed as shown in Fig. 5. All machines’
internal and the outgoing physical ports are connected to the
patched OvS. We have 4 virtual racks of 7 servers each (rack
1, 2 and 3 are senders and rack 4 is receiver) all servers are
installed with Ubuntu Server 14.04 LTS running kernel version
(3.16) and are connected to the ToR switch through 1 Gb/s
links. Similarly, the machines are installed with the iperf [16]
program for creating elephant flows and the Apache web server
hosting a single webpage “index.html” of size 11.5KB for
creating mice flows. We setup different scenarios to reproduce
both incast and buffer-bloating situations with bottleneck link
in the network as shown in Fig. 5. Various iperf and/or Apache
client/server processes are created and associated with their
own virtual ports on the OvS at the end-hosts. This allows
for scenarios with large number of flows in the network to

emulate a data center with various co-existing applications.
In experiments, we set the controller monitoring interval to a
conservative value of 300ms whereas the network RTT ranges
from ~ 300us without queuing and up to ~ 300us — 2ms
with in-network queuing.

We run a scenario in which TCP and UDP elephant flows are
competing for bandwidth and to test the agility of SDN-GCC, a
burst of mice TCP flows is introduced to compete for bandwidth
in a short-period of time. We first generate 7 synchronized TCP
iperf flows and another 7 UDP iperf flows from each sending
rack for 20 secs resulting in 42 (2 x 7 x 3 = 42) elephants at
the bottleneck. At the 10*"sec, we use Apache Benchmark [8]
to request “’index.html” webpage (10 times) from each of the
7 web servers on each sending rack (7 x 6 x 3 = 126 in total).
Figs. 6a and 6b show that the TCP elephants are able to grab
their share of bandwidth regardless of the existence of non-well-
behaved UDP traffic. In addition, Fig. 6¢ and 6d suggests that
mice flows still benefit from SDN-GCC by achieving a smaller
and nearly smooth (equal) flow completion time on average
with a smaller standard deviation demonstrating SDN-GCC'’s
effectiveness in apportioning the link capacity. In summary,
SDN-GCC effectively tackles congestion and allocates the
capacity among various flow types as expected.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we set to build a system that relies of the
pervasive availability of SDN capable switches in datacenters
to provide a centralized congestion control mechanism with
a small deployment overhead onto production data centers.
Our system achieves better bandwidth isolation and improved
application performance. SDN-GCC is a SDN framework that
can enforce efficient network bandwidth allocation among
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Figure 6: Testbed experiment involving 126 TCP mice competing

against 21 TCP (same variant) and 21 UDP elephants

competing VMs by employing simple building blocks such
as rate limiters at the hypervisors along with an efficient
SDN application. SDN-GCC is designed to operate with low
overhead, on commodity hardware, and with no assumption of
tenant’s cooperation which makes a great composition for the
deployment in SDN-based data center networks. SDN-GCC
was shown via simulation and deployment that it can efficiently
divide network bandwidth across active VMs by enforcing the
target rates regardless of transport protocol in use. Further
testing of SDN-GCC using realistic workloads in our testbed
is currently part of our ongoing work.
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