Hysteresis-based Active Queue Management for
TCP Traffic in Data Centers

Ahmed M. Abdelmoniem
CSE Dept., HKUST, Hong Kong
CS Dept., FCI, Assiut University, Egypt
amas@cse.ust.hk

Abstract—Much of the incremental improvement to TCP over
the past three decades had the ultimate goal of making it
more effective in using the long-fat pipes of the global Internet.
This resulted in a rigid set of mechanisms in the protocol
that put TCP at a disadvantage in small-delay environments
such as data centers. In particular, in the presence of the
shallow buffers of commodity switches and the short round
trip times in data centers, the continued use of a large TCP
initial congestion window and a huge minimum retransmission
timeout (both inherited from the Internet-centric design) results
in a very short TCP loss cycle that affects particularly the flow
completion times of short-lived incast flows. In this paper, we first
investigate empirically the TCP loss cycle and discuss its impact
on packet losses, recovery and delay; then we propose a switch-
based congestion controller with hysteresis (HSCC) that aims
to stretch the TCP loss cycle without modifying TCP itself. To
protect incast flows from severe congestion, HSCC is designed
to transparently induce the TCP source to alternate between
its native TCP congestion control algorithm and a slower more
conservative constant bit rate flow control mode that is activated
when congestion is imminent. We show the stability of HSCC
via analytical modelling, and demonstrate its effectiveness via
simulation and implementation in a small testbed.

Index Terms—Congestion Control, Hysteresis, AQM, TCP

I. INTRODUCTION

TCP is by far the most predominant transport protocol
in use in today’s data centers. It was gradually fine-tuned
with additional mechanisms that were not part of its initial
incarnation, mostly in response to the evolution of the Internet
scale (distance and bandwidth). As a direct consequence,
most default TCP implementations found in the most popular
operating systems today are geared to be efficient in the high-
bandwidth long-delay Internet environment. In particular, the
congestion control algorithm has seen dramatic changes over
the years and numerous TCP congestion controllers have seen
the light, mostly to meet the requirements of new operating
environments in the Internet (e.g., Cubic TCP [1], Fast TCP
[2], and so on).

With such protocols, it has been observed that small short-
lived flows experience unduely long flow completion times
(FCT) in data centers, with a negative impact on the user
experienced performance. As a consequence, an increased
attention has been paid to addressing this problem in the

This work was done while Ahmed was at CSE Dept.,, HKUST, HK and
was supported in part under grant: HKPFS PF12-16707.

Manuscript is accepted in proceedings of IEEE INFOCOM (©2019 IEEE

Brahim Bensaou
Dept. of Computer Science and Engineering
HKUST, Clear Water Bay, Hong Kong
brahim@cse.ust.hk

past few years. For instance, DCTCP [3, 4], and TIMELY
[5], propose new congestion control mechanisms designed
specifically to work well in data center networks. In contrast,
other studies, simply identified the source of performance
degradation and proposed to tune existing congestion control
parameters to match the scale of data center networks (e.g.,
reduce the initial congestion window to cope with the small
switch buffers [6] or scale down the minimum retransmission
timeout to match the typically small RTT of data center
[7]). All these approaches have been shown to yield some
performance improvements, and some are already in use in
production data centers, however, these solutions can only
apply to privately owned homogeneous data centers where the
operator controls both ends of the internal TCP connections
and can replace the transport protocol with a new one in all the
virutal machines. Switch assisted congestion control has also
been investigated as a means to improving the FCT of short-
lived flows. For example pFabric [8], and PIAS [9] leverage
priority queuing in the switches to segregate and serve short-
lived flows with a high priority. These mechanisms also apply
exclusively to privately owned data centers as they require
modification of the end-system in addition to the switch (e.g.,
PIAS [9] relies on DCTCP).

In virtualized multi-tenant, data centers, the common phys-
ical infrastructure is shared by multiple tenants that run their
applications on virtual machines (VMs). The tenants can
implement and deploy their preferred version of operating
system and thus of TCP, or even opt for using UDP. Also, the
end user can tweak TCP parameters in the guest VM to meet
the application needs. As a result, the approaches described
above cannot apply as they work only in homogeneous data
centers. To tackle this problem, several approaches were pro-
posed in the literature: in the most straightforward, the public
data center operator statically divides the network bandwidth
among its tenants, giving each of them a fixed allocation with
guaranteed bounds on delays [10, 11]. This technique, though
effective, would ignore statistical multiplexing resulting in
a small inefficient flow admissible region, in view of the
burstiness of the traffic [12]. The second approach suggests to
modify all the switches in the data center to enforce a small
buffer occupancy at each switch. This can be achieved by using
a form of weighted fair queuing and/or by applying various
marking thresholds within the same queue similar to DiffServ
[13, 14]. Typically, each source algorithm requires a certain

weight/threshold to fully utilize the bandwidth. Hence, such
schemes are not scalable to deal with the large numbers of
flows that share public data center networks. In addition, they
may lead to the starvation of some traffic classes in the absence
of flow admission control and are hard to deploy due to the
increasing number of congestion control algorithms employed
by the tenants. The last approach is covered in recent works
in [15, 16] and aims to enable virtualized congestion control
in the hypervisor or by enforcing it via the virtual switch
(vswitch) transparently to the tenant VM. This last approach
requires fully-fledged TCP state tracking and implements full
TCP finite-state machines in the hypervisor which eventually
can overload and slow down the hypervisor considerably.

To enable true deployment potential in such heterogeneous
TCP environment without changing TCP, in this paper, we
adopt a switch-based approach that interacts with the end-
systems only via standard universally adopted TCP mech-
anisms to convey congestion signals to the sources, which
makes it independent of the actual congestion control algo-
rithm implemented at the source. In normal mode when there
is no congestion, the sources compete via the TCP congestion
controller, whereas when congestion is imminent, the sources
become simple flow controllers. The alternation between these
two modes is controlled by the switch and is triggered in
response to congestion. This approach enables public data
center operators to innovate in the switch without paying
attention to the TCP variations running in the VMs.

In the remainder of the paper, we investigate and discuss the
role played by RTO in the degradation of the FCT performance
of short-lived flows in Section II. We dissect the problem
and propose our solution in Section III. In Section IV we
model our control to show its stability, and discuss some of
its design and practical aspects. In Section VI, we provide
some simulation results, then, in Section VII, we discuss some
implementation details and show experimental results from a
real small-scale testbed. We discuss some important related
work in Section VIII. And, finally we conclude the paper in
Section IX.

II. MOTIVATION
A. Impact of RTO on The FCT

In data centers, partition/aggregate applications that gener-
ate short-lived flows are challenged by the presence of small
buffers, large initial sending windows, inadequate minRTO
and/or slow-start exponential increase. This combination of
hardware and TCP configuration frequently leads to timeout
events for such applications. In particular, when the number
of flows they generate is large and roughly synchronized,
incast-TCP synchronized losses occur. As the loss probability
increases linearly with the number of flows [17], the flow
synchronization and the excessive losses lead to throughput-
collapse for small-flows in data centers.

To illustrate this, consider a simplified fluid-flow model with
N flows sharing equally a link of capacity C. Let B be the
flow size in bits and n be the number of RTTs it takes to
complete the transfer of one flow. The optimal throughput

' Worklo‘ad
Websearch mmm—

Workload
Websearch
0.8 (~ Datamining m—

0.7 -
0.6
0.5
0.4
0.3
0.2
0.1

0.9 -
0.8 -

= 0.9 -

Datamining m—

Number of flows (%)
Total number of Bytes (%)

<lMB 1-10MB >10MB

<lMB 1-10MB >10MB

Flow Size

(b) Flow bytes per group

Flow Size

(a) Number of flows

60

T

Per-Packet RTO Probability (%)
. 12

Workload
mmm Websearch

50 mmmm Datamining 1

T T
mm Websearch
= Datamining 410
40

30

Websearch
°
Datamining

20

10

% of Flows exceeding 200ms

0

<lMB 1-10MB >10MB
Flow Size

(¢) Frequency of RTO
Figure 1: RTO frequency and its impact on the FCT.

<lMB 1-10MB >10MB

Flow Size

(d) Missed deadlines

p* can be simply expressed as the fraction of the flow size

to its average transfer time: px = m%' That is, it takes
<=

BN/C to transmit the B bits plus an additional queueing
and propagation delay of 7 seconds for each of the n RTTs.
In practice, when TCP incast congestion involving N flows
results in throughput-collapse, the flow experiences one or
more timeouts and recovers after waiting for RTO. Then,
the actual throughput writes: p = m, Typically
n’ > nand 7/ > 7. In addition, in data centers, the typical RTT
is around 100us, while existing TCP implementations impose
a minimum RTO of about 100 to 200ms. As a consequence,
large sized flows yield values of n’' such that n'7 is similar
or greater than RT'O. In contrast small short-lived flows only
last for a few RTTs, therefore RT'O > n'r. And so, when
a small flow experiences a loss that cannot be recovered by
3-duplicate ACKs (called in the sequel a non-recoverable loss
or NRL), then it has a high chance of missing for example
its service level agreement deadline (of say ~ 100ms). To
improve the performance of small flows without altering TCP,
curbing NRLs as much as possible for such flows is the answer.
This can be achieved by adapting the source rate of all ongoing
flows when congestion is imminent to make room in the switch
buffer for small flows.

B. Measurement-Based study

To reinforce this simple analysis, we studied empirically the
frequency of timeouts in a small-scale testbed equipped with
data center grade servers and top-of-rack switches. To make
the results meaningful, we reproduced the workloads found
in public and private data centers via a custom built TCP
traffic generator, based on flow sizes and inter-arrival time
distributions drawn from various realistic workload studies
(e.g., Websearch [3] and Datamining [18] and others [19, 20].
To track the nature of packet losses, we custom built a Linux
kernel module to collect live TCP socket-level events and
statistics (e.g., timeouts, retransmissions, sequence numbers,

and so on). We generated a total of 7000 flows and catego-
rized them into small flows (with a size < 1M B), medium
flows(with a size of 1 to 10M B) and large one (with sizes
exceeding 10M B). We use TCP New-Reno without ECN
function.

Similar to past works, Fig. la and Fig. 1b show that, in
Websearch and Datamining workloads, most flows are small.
In addition, in web search data bytes are distributed almost
uniformly over the three categories, whereas in Datamining,
most of the bytes are produced by large flows. Fig. 1c shows
the per-packet RTO probability for each type and suggests that
RTO is highly likely for small and medium flow types in both
workloads. Noticeably, the per-packet RTO probability (i.e.,
to recover from NRL) for small flows is almost ~ 0.6% and
~ 9% in Websearch and Datamining workloads, respectively.
The RTO probability is non-negligible as it correlates with
the number of flows missing their deadlines (e.g., their FCT
exceeds the ideal FCT by an extra 200ms) which, according
to Fig. 1d, is (=~ 26%, =~ 18%) in Websearch and Datamining,
respectively.

As an example, assuming on average a small flow size is
B=500KB and on average 36 flows [3] share the bottleneck
link capacity of C=1Gbps equally, then, such flow should
finish its transmission in ~ 17 RTTs with an FCT of about
150ms. According to Fig. 1, on average a flow would experi-
ence 1/2 RTO in Websearch (respect. 2 RTO in Datamining)
delay. This translates into adding more than 100ms (respect.
400ms) to the ideal FCT for Websearch (respect. Datamining).
These results show the effect of RTOs on small flows that
usually have just a few segments to send.

III. ANATOMY OF THE PROBLEM AND SOLUTION

In this section, we explore the problem of FCT bloating due
to RTOs and its impact on the throughput.

RWND RWND

RW AW L L
R ! — >

CWND i’ CWpo

w‘ w PP N "
w1 /—

W/2 SWND >

SWND > w

T Wa, ‘ | |

wpr L v X %

way . N T !

d T T, RIT T, Ts 't

W/2RTT ~MinRTO- t

-1 Cycle- 1Cycle
(a) TCP Droptail AQM (b) TCP Hystersis-based AQM
Figure 2: (a) The period and the number of MSS sent within each

TCP loss cycle. (b) Same TCP interleaved with intra-cycle
slow CBR modes which stretches the loss cycle.

A TCP flow sending rate is controlled by the sending
window size swnd which is drawn as the minimum of two
other windows: the congestion window, cwnd, designed to
estimate the steady state bottleneck-link fair-share of the

flow, and the flow control receiver window, rwnd, carried
by returning Acknowledgement packets, indicating the extra
number of bytes that the receiver can accept at this time. In
TCP congestion avoidance (CA), cwnd evolves in a periodic
sawtooth shape as a result of the well known AIMD algorithm
which ensures that cwnd attains all the values between the
maximum (w) and its minimum value (%) [17]. The value
w evolves downward when congestion increases and upward
when congestion recedes. In modern data center, because
the RTT is small, rwnd > cwnd, in other words the flow
control window has no effect and the source sending rate
is fully determined by the congestion window. In addition,
the bandwidth delay product is small, therefore each TCP
source’s bandwidth fair share is also small. The throughput
of TCP being inversely proportional to the square root of the
loss event probability [17], such small share implies frequent
losses. For incast traffic upon arrival, the short loss cycle
implies that some flows will not be able to build a large
enough flight size to recover via 3-duplicate ACKs. This leads
to repeated NRLs and waiting for minRTO. Fig. 2a illustrates
this short loss cycle of TCP. This problem can take place with
all window-based TCP congestion control mechanisms that
rely on loss/congestion signals to adjust their sending rates
(e.g., RENO, CUBIC, DCTCP).

A. A Control Theoretic Solution

We propose a simple solution that aims to avoid non-
recoverable losses by delaying losses outright (or stretching
the loss cycle). Our control mechanism enables the sources to
alternate between two operation modes: one governed by the
standard AIMD, in which the source sends data according to
its congestion window cwnd as before, and one conservative
constant bitrate mode (CBR) where each source is only
allowed to send a small constant number of segments per
RTT. Alternation between the two modes happens in response
to signals sent by the switch, based on the congestion level
observed in the switch buffer. When the queue in the switch
buffer builds up, the switch triggers the CBR mode. This can
be achieved by relying on the flows control windows rwnd to
enforce the CBR rate (for example the controller can simply
rewrite the value of rwnd in the ACK headers to 1 MSS for
all flows). When the queue recedes, the senders resumes the
use of cwnd allowing them to recover the previous sending
rates.

An implicit consequence of this scheme is that short-lived
incast traffic is discriminated positively when it is most likely
to experience non-recoverable losses, immediately after the
connection is set up. That is, when many synchronized flows
surge, the buffer content builds up fast, and our scheme
switches all ongoing flows to CBR mode. These flows react,
typically %RTT later, by reducing their sending rate to the
minimal CBR rate of 1 MSS while the incast traffic flows are
still within their three-way handshake (or sending their first
few packets). By dynamically modifying rwnd, the switch
implicitly inhibits cwnd without modifying TCP in the end
systems, and thus controls when the TCP source sends ac-

cording to its fairly acquired cwnd value and when it sends
according to the conservative rate set by the switch in rwnd.
Fig. 2(b) shows cwnd, rwnd and swnd of TCP with periods
where cwnd is inactive.

IV. HSCC SYSTEM MODELING

HSCC control loop is depicted in Fig. 3a, the system
consists of five components namely three data transfer modes,
the queue and a hysteresis controller that switches dynamically
between the three data sources. These include a TCP Additive
increase source with increase rate of 1 MSS/RTT, a CBR
source sending at a constant rate of 1 MSS/RTT and an
artificial CBR+ source that combines the previous CBR source
and a Multiplicative Decrease on the congestion window.
Fig. 3b shows the switching law used by HSCC. HSCC is
a Counter-Clockwise (CC) hysteresis where the switching
happens first when the high threshold oo is crossed then the
state remains the same until the lower threshold « is crossed.
Fig. 3b shows the sequence of switching as follows: i) while
using TCP source sending at rate A;, when the high threshold
«ug 1s hit, the controller switches to the lower rate CBR source
with rate \o; ii) the system keeps operating in this CBR mode
with rate Ay until the lower threshold « is hit. At this point,
the controller switches back to the TCP source with sending
rate \o. Notice that, as cwnd is only inhibited during CBR
mode, the TCP source will continue increasing cwnd with
each ACK during the CBR mode, leading to the new rate As.
iii) The system continues like this until the queue exceeds the
buffer space (i.e., M) leading to the loss of packets. In such
case, the system switches to a third source CBR+ where it
applies multiplicative decrease to cwnd and switches to send at
rate \o until it crosses again the low threshold. iv) otherwise,
the system stays in the current state. Fig. 3c shows the system
transition diagram.

A. HSCC Design and Implementation

Fig. 4 shows the system components which are: 1) the
switch, which triggers the switching between the different
operating modes and rewrites the receive window field rwnd
to 1 MSS on the ACKs for all flows for ports operating CBR
mode. Hence, the switch does not require any per-flow state.
2) the end-host helper module that resides in the hypervisor
and whose role is to avoid misalignment in the rwnd field
when TCP window scaling factor is activated by the end
system.

HSCC Operational Aspects: The end-host helper module
hashes flows into a hash-table with the flow’s 4-tuples (source
IP, dest. IP, source port and dest. port). The hash is used as the
key and the corresponding window scale factor as the value.
Flow entries are cleared from the table when a connection
is closed (i.e., FIN is sent out). To ensure the scale factor
is taken into account, the end-host module writes the scale
factor for all outgoing ACK packets in the 4-bit reserved
field of TCP headers (alternatively, we could use 4-bits of
the receive window field and use the remaining 12 bits for
window values). The reserved bits are cleared by the helper

module otherwise the TCP checksum is invalid and the packet
is dropped. This approach avoids the need for recalculating a
new checksum at the end-host and the switch.

As shown in Fig. 4, the end-host module resides right above
the NIC driver for a non-virtualized setup, and right below the
hypervisor to support VMs in cloud data centers. Hence, this
placement does not touch any network stack implementation
of host nor guest operating system, making it ready for
deployment in production data centers. The end-host module
tracks the scaling factor used by local communicating end-
points and explicitly append this information only to outgoing
ACKs of the corresponding flow. The switch module on the
other hand monitors the output port queues and starts rewriting
the incoming ACKs headers according to the HSCC switch
dynamics. To avoid problems at the receiver, the switch uses
the appended scale factor to rescale the window value so that
it can be interpreted correctly by the ACK receiving end-point
in the VM.

Receive Window Scaling: HSCC needs a hypervisor
module as it relies on a scale factor to rescale the modified
window written into TCP header of incoming ACKs. TCP
specification [21] states that the three-byte scale option may
be sent in all packets or only in a SYN segment by each
TCP end-point to inform its peer of its own scaling factor. If
the former approach is adopted, then the hypervisor module
is not necessary as the switch can readily obtain this value
from the packet itself, however, TCP implementations in most
operating systems including Linux adopt the latter approach
to cut overhead. Also, in practice, window scaling may be
unnecessary for networks with Bandwidth-Delay (BD) product
of 12.5KB (i.e., C=1 Gbps and RTT~ 100us). However, with
the adoption of high speed links of 10 Gbps (i.e., BD=125KB),
40 Gbps (i.e., BD=500KB) and 100 Gbps (i.e., BD=1.25MB),
the scaling factor becomes necessary to utilize the bandwidth
effectively. This applies to cases when there are less than 2 (for
10Gbps), 8 (for 40Gbps) and 20 (for 100Gbps) active flows.

The probability of having such small number of active flows
in data centers is extremely small [3], but still possible. As
such in HSCC we opt to still handle window scaling via the
end-host module instead of doing it in the switch. The shim-
layer extracts and stores from outgoing SYN and SYN-ACK
packets the advertised scaling factor for each established TCP
flow and encodes the scale factor using the 4 reserved bits in
the TCP header. The switches on the path use this value to
scale the new receive window properly if needed while the
destination end-host module clears it out before the packet is
forwarded to upper layers or the guest VM.

Need for Symmetric Routing: HSCC by design requires
the ACKs to return on the same backward path the data flows
through. This requirement is easily met given the common
deployment of ECMP routing in data centers [18-20].

V. STABILITY ANALYSIS

We can easily show that the combination of TCP and HSCC
switch forms a non-linear system that is stable. To this end
we invoke the fluid flow modeling approach used in [22]

(a) A schematic diagram of the system

; A : g
TCP ‘ HSCC Amva‘IkiRate .. N
Al: 1/RTT 4{ Control TCPA=W \1% : s
: N
CBR Queue TCP:A, T \39
CR:1/RTT AZ%)‘ el | TeP=W/2—— o
g \ \
AR CBR+ -
CBR+ | CBR:M 2 »
MD: W/2T T a o W VS v
Queue Size 3

(b) HSCC hysteric control low

(¢) State transition diagram

Figure 3: (a) HSCC system components and the feedback loop shows the hysteresis controller managing the switching between TCP, CBR
and CBR+ sources (b) the control law of HSCC obeying a counter-clockwise hysteresis to switch between states based on queue
occupancy . (¢) Flow chart depicting the possible state transition of HSCC system

K 1. 1!
8\[I\ I%ﬁ;l\l\\ Ja

,/Reciever <>~ Sender
/ ~ | =~
~ ~ =~ ~
| SRAM ” Registery |
S3-D3 N Out Queues N
VM3 VM2 VM1 g| | Out £
2 Port [Hscc £
- z Find Module 5
| Hypervisor | o

HsCCModule [{2°Y 7 || [Bsidata [Is2:data | s3:data
B B smee= s2:02 3 .
|—'—'——| wod s || BDLACK* fp2:ACK* & D3:ACK

NIC :

Figure 4: HSCC System: It consists of an end-host module that
attaches scaling value to ACKs and HSCC switch which
performs Hysteresis switching between TCP and CBR.

with standard linearization [23]. Due to space constraints we
only give here a sketch of the proof without going into all
the details. We assume a finite buffer capacity M, and the
RTT differences among competing flows to be negligible,
packet size L is constant and sources have an infinite supply
of data (i.e., small flows become a temporal low-frequency
disturbance/noise imposed on the system, and are absorbed by
system dynamics). The RTT for a packet on a bottleneck link
of capacity of C' can be written as 7;(t) = T.+ 1, + T, + ‘“—(t),
where T} &C(L) is the transmission time, 7}, is the
pro agation delay, T, is the processing delay on the path and

is the queueing delay seen by flow . Let P, € [0,1) be
the packet drop probability triggering 3-DUPACK recovery
and P, € [0,1) be the update probability of rwnd when the
hysteresis switch is ON (i.e., CBR mode is active). Under these
assumptions the fluid model of TCP-HSCC can be shown to
be a non-linear system with two variable (w(t), ¢(t)) and two
inputs (P, P,). Its dynamics are governed by the following
system of differential equations:

dw(t) _ <1 —Pu(t—7() Pu(t— T(t)) w(t — 7(t))
dt 7(t) w(t)T(t) T(t —7(¢))
_wt)P(t —7(t) w(t — 7(t))
2 Tt —7(t)’
WO _ 1 pue- T(t))NZL:)) Pt - T(t))NT(lt) —c

(D
Linearization: By definition of the FIFO queue, we can
immediately write, if g < M then P, > P,. For convenience
we write P, = kP, with k € (0, 1]. Intuitively, « is a positive
scalar inversely proportional to the number of queue passages
over high threshold ay before a single buffer overflow takes
place. Since after every passage through oo, when the TCP
mode becomes active the window increases by 1 MSS per
flow and if N (the number of flows) is given then x can
be calculated. Hence, x is the number of packets between
the high threshold as and the full buffer M divided by the
number of flows N (i.e., k = %) The operating point
is when the system dynamlcs comes to rest (i.e., at equilibrium
point defined by (’lU()7 q0,]Dl() = R], Pu() = I'ipo). Hence, the
equilibrium points can be found by solving Eq.(1) for % =0
and % = 0 (The details of the linearization procedure are
similar to [22] and are omitted.)

-1
dw(t) _ 0 - P— (KU;()TO B wi n 1>
0)
dq(t) . . CT()/N—P()
a 0 7 W=

where 79 = % +T. We use the obtained equilibrium points
to define the perturbed variables and inputs as dw = w — wo,
6q =q—qo and 0P, = P, — P,o. Then we can construct the
linearized system of equations as follows:

. . _& 1 KWo
dw(t) = To (ono < > ow(t)
1
_ — 3
~ G alt) = gt = 7). 3)
N 1

From here, we can easily show that the TCP-HSCC system
is stable by simply showing that the dynamics matrix of 3 is

320

300 /\,, 1 600
5 280 1 5 [
E 260 | a 1 ~ s00
£ 240 /‘!/ =f=dctcp | g 400 | dctcp ==
E 220 - = ¥ hscc] z hscc 3¢
200 - pias £ L pias J
& 180 | “/ red | 5 300 red
g S 200 b 4
3 160 4 §
140 4 100 1 St |
120 4 E—E =i
100 L 0 P S
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Network load Network load
(a) Small Flows: AVG FCT (b) Small Flows: Max FCT
16 ——————— 220 ———
14l 2 200 |
= 180 |
E 12} 1 G 160
- £
£ 10r > =f=dctcp - 140 dctcp ==
5 sl P hscc | = 120 |- hscc 9
= pias G 100 f pias
% 6 red | S el red
g 3
g a4t / 1 = 60
5 40
2 b , S
» 20 -
0 L L L L L L L a2 P

20 30 40 50 60 70 80 90 100
Network load

() Small Flows: Max FCT

20 30 40 50 60 70 80 90 100
Network load

(e) Small Flows: AVG FCT

340 T T T T 120 -i'-d t' T
ctcp
320)\'. 1 | 9 hscc

110
300 1
-I-dctcp_
= P& hscc

280 - 100 F
260 -
240 [a” pias |

90 /
220 -

80
200

w_ 70»/"*—/&,/_
wo X 6

180
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100

red

Average FCT in (ms)
Timeouts (# * 100)

Network load Network load
(c) All Flows: Average FCT (d) All Flows: # of RTOs
—_—— 900 o
L 4 ctcp
g 140 | . 700 b = Feg
< =< & L
Z 130 | R =H=dctcp | > 600
o ¥ hscc E
uw pias 3 500
g wor red | £ a00 | /
e E
¢ 110 | 1 300 /
< oo,
§ 7

100

| 200 \/&,(J
P S S S R R 100 = PR

20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Network load Network load

(g) All Flows: Average FCT (h) All flows: # of RTOs

Figure 5: Performance metrics of simulation runs in a large 9 Leaf - 4 Spine topology. The traffic generator varies the network load in the
range of [30%, 90%]. (a-d) Websearch workload. (e-h) Datamining workload.

Hurwitz stable [23].

VI. SIMULATION ANALYSIS

We first conduct a simulation analysis of HSCC perfor-
mance and then we will examine experimental results from
a real implementation in a small cluster.

A. Realistic Traffic in DC Topology

We conduct simulation analysis of HSCC system in a data
center-like topology with varying workloads and flow size
distributions. We use a spine-leaf topology with 9 leaves and
4 spines using link capacities of 10Gbps for end-hosts with
an over-subscription ratio of 5 (the typical ratio in current
production data centers is in the range of 3-20+). Each rack
hosts 16 servers with a total of 144 servers and per-port queue
of 84 packets. We compare the performance of HSCC with
various alternative schemes discussed in Section II (e.g., TCP
with RED-ECN, DCTCP and PIAS). The performance metrics
of interest are the flow completion time or FCT for mice flows
(i.e., flows in the range [0-100Kbtyes]), the average FCT for
all flows, the number of timeouts experienced and the number
of unfinished flows. In the simulations, per-hop link delays are
set to 50 us, TCP is set to the default TCP RTO,,;, of 200
ms and TCP is reset to an initial window of 10 MSS, and a
persistent connection is used for successive requests (similar
to the Linux implementation). The flow size and inter-arrivals
distribution are extracted from two workloads (i.e., Websearch
and Datamining). A parameter () is used to simulate various
network loads. Buffer sizes on all links are set to be equal to
the bandwidth-delay product between end-points within one
physical rack. The low threshold «; is set to 25% and the
high threshold as is set to 50% of the buffer size.

Fig. 5 shows the average and maximum FCT for small flows
as well as the average FCT and total timeouts of all flows.

The results show the performance of the four schemes. We
observe that HSCC can greatly improve the average and tail
FCT of small flows. As a result, the average FCT of all flows
is improved for two reasons: small flows are larger in number
and they can finish quicker leaving network resources for
large ones. HSCC helps in reducing the number of timeouts,
which improves the average and max FCT. The results suggest
that stretching loss cycles can lead to significant performance
gains. We note that PIAS performs better in Datamining
workload and worse in Websearch workload. We suspect that
the fixed so-called demotion threshold of PAIS and larger flow
sizes in Websearch lead to starvation of certain flows. We
inspected the output traces and found that across the loads
[30-90]1%, PIAS has 25 unfinished (or starved) flows.

B. Sensitivity Analysis of HSCC

We repeat the initial simulation experiment using Web-
search workload with the same parameters as previously while
varying the values of low threshold a1l and high threshold
a2 to assess the sensitivity of HSCC to the setting of these
parameters. The results (omitted due to space) show that FCT
is not affected at all by the choice of the parameter a1 and
«2. Similar results are observed for Datamining. This is not
surprising because in all cases the system switches between
low rate CBR and TCP but at slightly (sub-microsecond)
different times. This means that our scheme is robust for any
reasonable values of the thresholds.

We repeat the experiment while varying the values of rwnd
used in the rewriting process of the receive window between
1-10 MSS. As Fig. 6 shows, the FCT greatly depends on
the choice of this value. The improvement forms a normal
distribution with increase starting at 1 MSS up to a peak at 5
MSS followed by a degradation of the improvement. Further
study of the optimal value of rwnd is left for future work.

220 T T T T T T T 250
240
230 -

T T T T T T T
220
210
200
190
180 +

170
160
150
140

Average FCT in (ms)
Average FCT in (ms)
L

80

TR S
20 30 40 50 60 70 80 90 100
Network load

P R S S S
20 30 40 50 60 70 80 90 100
Network load

1395 %7 B9 13953789
(a) Small Flows: AVG FCT (b) All Flows: AVG FCT

Figure 6: A websearch experiment to show the sensitivity of HSCC
to the choice receive window RWND.

VII. EXPERIMENTAL ANALYSIS

We prototyped the HSCC controller on the NetFPGA plat-
form and used it to conduct a series of experiments.

The testbed consists of 14 high performance Dell Pow-
erEdge R320 servers. The machines are equipped with Intel
Xenon E5-2430 6-cores CPU, 32 GB of RAM. Each server
has a built-in two 1 Gb/s Broadcom NICs in addition to
an Intel 1350 server-grade 1 Gb/s quad-port NIC resulting
into 6 NICs per server. Hence, using the 14x6 NICs, we
organized the servers into 4 racks (each rack is typically a
subnet) and connected them via 4 non-blocking Top-of-Rack
(ToR) switches. We implemented HSCC on a NetFPGA and
deployed it as a core switch to interconnect the 4 ToR switches.
The 4 racks are divided into (rack 1, 2 and 3) as senders
and rack 4 as the receiver. Each port in the same subnet is
connected to one of the non-blocking ToR switches through 1
Gb/s link. The servers are installed with Ubuntu Server 14.04
LTS upgraded to kernel version (3.18) which has by default
the implementation of DCTCP [24], Cubic and New Reno
congestion control mechanisms. Finally, we also loaded and
run on all end-hosts the HSCC shim-layer implemented as
Linux netfilter kernel module.

A. Micro-Benchmarking Experiments

For experimentation purposes, the machines are installed
with the iperf program [25] for creating long-lived traffic
(i.e., elephant flows) and the Apache web server and Apache
benchmark [26] for creating small web responses (i.e., mice
flows). We setup different scenarios to reproduce both “incast”
and “incast with background workload” situations. To reduce
CPU load, guest VMs are emulated via host processes, each
process being bonded to a virtual port created on the Open
vSwitch (OvS) [27]. These processes are either an iperf flow
or an Apache client/server process bonded to its own virtual
port. In this manner, we can emulate traffic originating from
any number of VMs and simplify the creation of scenarios with
a large number of flows in the network. The micro-benchmark
objectives are as follows: i) to verify that with the support
of HSCC, TCP can support many more connections and
maintains high link utilization; ii) to verify the effectiveness
of HSCC system in reducing incast congestion effect on TCP
flows; iii) to observe HSCC'’s ability to improve the FCT of
mice when competing for the bottleneck link with elephants.

Maximum

I

Average Standard Deviation

1.0
0.8 |- — -
0.6 |- — -

CDF

0.4l 4

0.2} — -

0.0 . .

10’ 10°10° 10" 10> 10%10’
Response Time in (ms-logscale)

-+ HS-Cubic ---* HS-Reno — HS-DCTCP - - DT-Cubic - -+ DT-Reno — DCTCP

(a) Mild traffic case: 126 mice flows retrieving 1.45GB

.
10> 10° 10*

1.0 Average Standard Deviation Maximum

. T
0.8} 4 F e r e

L 061 1 F . .

5 -

© 04l 4 4 4
0.2} - - - -
0.0 1 1 : 4

10 10%10 10% 10%10° 10
Response Time in (ms-logscale)
-+ HS-Cubic -+ HS-Reno — HS-DCTCP - - DT-Cubic -+ DT-Reno — DCTCP

(b) Heavy traffic case: 630 mice flows retrieving 7.25GB

@l HSCC [No-HSCC [HSCC [No-HSCC

40 3689

37.70

36.96

8.36

Drops in Pkts (x 10°)
o
T

Drops in pkts (x 10°)

0.56
DCTCP

0
Cubic Reno Cubic Reno DCTCP

(¢) Mild incast case (d) Heavy incast case

Figure 7: Experimental results of two Incast mild and heavy traffic
scenarios.

Incast Traffic without Background Workload: First, we
run two mild and heavy incast scenarios where a large number
of mice flows transfer 11.5KB sized blocks. In both scenarios,
7 servers in rack 4, issue web requests for “index.html” of
size 11.5KB from another 21 servers in rack 1, 2 and 3.
Hence, a total of 126 (21 x 7 — 21) synchronized requests
are issued. In the mild scenario, each request is repeated a
thousand times consecutively, which is equivalent to an 11.5
MB transfer. The scenario involves the transfer of 1.5GB in
total (i.e., 11.5M B x 126) within a short period through the
bottleneck link. In the heavy load case, a thousand consecutive
requests are issued however, each process uses 5 parallel TCP
connections instead of one only. This results in 630 flows (i.e.,
126 x 5) at the same time. Statistics of the FCT for mice flows
are collected from Apache benchmark.

Fig. 9 shows, under both mild and heavy load, HSCC
achieves a significantly improved performance. The compet-
ing mice flows benefit under HSCC in the mild case by
achieving almost the same FCT on average but with an
order-of-magnitude smaller standard deviation compared to
TCP (Cubic, Reno) with DropTail and DCTCP. In addition,
HSCC can improve the tail FCT (max-FCT) by two orders-
of-magnitude, suggesting that almost all flows (including tail
ones) can meet their deadlines. In the heavy traffic case,
it can also achieve noticeable improvements even with 630

90th Percentile
H M

1.0 Standard Deviation

Average
T

0.8 |-
0.6 |-

CDF

0.4 -

0.2}

. W I - 1 [

10> 10%10" 10° 10" 10® 10°10° 10' 10
Response Time in (ms-logscale)

HS-Reno — HS-DCTCP - + DT-Cubic - - -+ DT-Reno — DCTCP

n

0.0 "~
10° 10

1 2 3

10
-+ HS-Cubic - -

(a) 126 mice flows’ performance in 1 incast epoch

1.0 T T —— T 35
[S ' 30 N HSCC [No-HSCC

0.8}
26.18 25.32

0.6}

CDF

= * HS-Reno
+++ HS-Cubic |
=== HS-DCTCP
=+ DT-Reno
+++ DT-Cubic
= DCTCP

ool T 5t
20 30 40 50 60 70 80

Elpehant Goodput (Mb/s)

(b) AVG elephant throughput (¢) Total packet drops

Figure 8: Performance of HSCC vs (TCP with DropTail or DCTCP):
each of the 126 mice flow requests 1.15MB file (= 100 x
11.5K B) 1 time while competing with 21 elephants

0.4

0.2

Drops in Pkts (x 10°)

1.09
DCTCP

competing flows, each with 1 MSS (1460 bytes) of window
worth, totalling 920KB ~ 3.2% times more than the size of
the bottleneck link of 287KB (the switch buffer size plus the
bandwidth delay product). Finally, HSCC can efficiently react
to incast and proactively throttles the flows to avoid packet
drops, Fig. 9 shows that, it can significantly decrease the drop
rate during incast events by =~ 96% in the mild load compared
to only =~ 86% in the heavy load scenarios.

Incast Traffic with Background Workload: We need
to characterize HSCC performance when it is subjected to
background long-lived flows and its effect on elephant flows’
performance. To this end, incast flows are set to compete
with elephant flows for the same outgoing queue. For this,
21 iperf [25] long-lived flows are set to send towards rack 4
continuously for 20 secs. In this case, the incast flows must
compete for the bottleneck bandwidth with each other as well
as the new background traffic. A single incast epoch of Web
requests is scheduled to run for 100 consecutive requests (i.e.,
each client requests a 1.15MB file partitioned into 100 11.5KB
chunks totalling ~ 145M B) after elephants have reached their
steady state (i.e., at the 10*"sec). Fig. 8a shows that, HSCC
achieves FCT improvements for mice flows while nearly not
affecting elephant flows performance. Mice flows benefit with
HSCC by improving the FCT on average and with one order-
of-magnitude reduction in FCT standard deviation compared to
TCP (Cubic, Reno) with DropTail and DCTCP. Also, HSCC
reduces the tail FCT by two order-of-magnitude, making it
nearly close to the average. The improvement means that mice
flows finish quickly within their deadlines. Fig. 8b shows that
elephant flows are almost not affected by HSCC’s intervention
due to the throttling of their rates during the short incast
periods. In Fig. 8c, packet drops under HSCC are shown to
be reduced because of its effective rate control during incast
and hence mice flows avoid long waiting for RTO.

1.0 Average Standard Deviation 90th Percentile
. T T Ty T T T
0.8} - o - o -
L 06} - o - o -
o
© 04l 4 4} 4
0.2} - o - o -
0.0 L L il W
10° 10> 10%°107"10°10'10°10% 10* 10° 10" 10® 10° 10*
Response Time in (ms-logscale)
-+ HS-Cubic ---* HS-Reno — HS-DCTCP - - DT-Cubic - -+ DT-Reno — DCTCP

(a) 126 mice flows’ performance in 9 incast epochs

1.0 —

[HSCC EEE No-HSCC

80 74.52
0.8f 70.05 72.93

0.6 60

' fv HS-Reno

*++ HS-Cubic
=== HS-DCTCP
=+ DT-Reno
+++ DT-Cubic 7
= DCTCP

oob— e
5 10 15 20 25 30 35 40 45
Elpehant Goodput (Mb/s)

(b) AVG elephant throughput (¢) Total packet drops

Figure 9: Performance of HSCC vs (TCP with DropTail or DCTCP):
each of the 126 mice flow requests 1.15MB file (=100 x
11.5K B) 9 times while competing with 21 elephants

CDF

0.4 40

0.2}
20

Drops in Pkts (x 10°)

0
Cubic DCTCP

Reno

Heavy Incast Traffic with Background Workload: We
repeat the above experiment, increasing the frequency of mice
incast epochs to 9 times within the 20 second period (i.e.,
at the 277, 4*"_ and 18" sec). In each epoch, each server
requests a 1.15MB file partitioned into 100 11.5KB chunks
totalling ~ 145M B per epoch and a total of ~ 1.3G B for all
9 epochs. As shown in Fig. 9a, even with the increased incast
frequency, HSCC scales well despite mice flows having to also
compete against bloated elephant flows. Mice flows’ average
and standard deviation of FCT see similar improvement as
the previous experiments compared to TCP with DropTail and
DCTCEP. This can be attributed to the decreased packet drops
rate with the help of HSCC and hence lesser timeouts are
experienced as shown in Fig. 9c. Compared to the previous
experiment, Fig. 9b shows, elephants throughput is reduced
because of frequent rate throttling introduced by HSCC during
incast periods. However, we believe that the bandwidth is fairly
utilized by mice and elephants with HSCC, hence the lower
elephant goodput when mice are active.

VIII. RELATED WORK

Numerous proposals have been devoted to addressing con-
gestion problems in data center networks (DCNs) and in
particular incast congestion. Recent works [28-30] analyzed
the nature of incast events in data centers and shown that incast
leads to throughput collapse and longer FCT. They show in
particular that throughput collapse and increased FCT are to
be attributed to the data center ill-suited timeout mechanism
and use of large initial windows in TCP’s congestion control.

Towards solving the incast problem, one of the first works
[31] proposed changing the application layer by limiting
the number of concurrent requesters, increasing the request
sizes, throttling data transfers and/or using a global scheduler.
Another work [7] suggested modifying the TCP protocol in

data centers by reducing the value of the minRTO value from
200ms to microseconds scale. Then DCTCP [3] and ICTCP
[32] were proposed as new TCP designs tailored for data
centers. DCTCP modifies TCP congestion window adjustment
function to maintain a high bandwidth utilization and sets
RED’s marking parameters to achieve a short queuing delays.
ICTCP modifies TCP receiver to handle incast traffic by
adjusting the TCP receiver window proactively, before packets
are dropped. However, all these solutions require changing the
TCP protocols at the end users, they can not react fast enough
with the dynamic nature of data center traffic and they impose
a limit on the number of senders.

Similar to DCTCP, DCQCN [33] was proposed as an end-to-
end congestion control scheme implemented in custom NICs
designed for RDMA over Converged Ethernet (RoCE). It
achieves adaptive rate control at the link-layer relying on
Priority-based Flow Control (PFC) and RED-ECN marking
to throttle large flows. DCQCN, not only relies on PFC which
adds to network overhead, it introduces the extra overhead of
the explicit ECN Notification Packets (CNPs) between the end-
points. TIMELY [5] is another congestion control mechanism
for data centers which tracks fine-grained sub-microsecond
updates in RTT as network congestion indication. Timely’s
fine-grained tracking may increase CPU utilization of the end
hosts and is sensitive to traffic variations in the backward path.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we showed empirically that the low
bandwidth-delay product of data centers results in short loss
cycles for TCP. Because of such short loss cycles, the pre-
dominant short-flows in data center turn out to experience
frequent non-recoverable losses, inflating thereby their FCT
by the TCP minRTO which is several orders of magnitude
larger than the RTT. To improve TCP performance in data
center we proposed to stretch the TCP cycles via a hysteresis
controller that alternates between TCP when congestion is
mild and a conservative CBR rate when congestion is likely
to occur. Using control theory we showed that our controller
is stable. Using ns2 simulation we studied the performance
and sensitivity of our switch algorithm to parameter setting
and finally using a combination of Verilog and Linux Ker-
nel programming we built a prototype of the HSCC switch
onto the NetFPGA platform. We deployed our prototype in
our small scale experimental data center and demonstrated
via experimental results that our switching algorithm indeed
improves the average FCT, the FCT variance and the tail FCT
of small flows which are known to predominate in data centers.
As part of future work, we are testing the algorithm in a much
larger data center with higher speeds and investigating an end-
host scheme that uses ECN feedback to perform the switching.

REFERENCES

[1] S. Ha and I. Rhee, “CUBIC : A New TCP-Friendly High-Speed TCP
Variant,” ACM SIGOPS Operating Systems Review, vol. 42, 2008.

[2] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation,
Architecture, Algorithms, Performance,” IEEE/ACM Transactions on

Networking, vol. 14, no. 6, pp. 12461259, 2006.
[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-

hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),”
ACM SIGCOMM CCR, vol. 40, p. 63, 2010.

[4]
[5]

[6]
[7]

[8]

[9]

[10]
(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]
(20]
[21]
[22]
[23]
[24]

[25]
[26]

[27]

[28]

[29]
[30]

(31]

[32]

M. Alizadeh, A. Kabbani, B. Atikoglu, and B. Prabhakar, “Stability
analysis of QCN,” ACM SIGMETRICS, vol. 39, no. 1, p. 49, 2011.

R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based
congestion control for the datacenter,” in ACM SIGCOMM, 2015.

M. Mellia, I. Stoica, and H. Zhang, “TCP Model for Short Lived Flows,”
IEEE COMMUNICATIONS LETTERS, vol. 6, no. 2, 2002.

V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe and effective
fine-grained TCP retransmissions for datacenter communication,” ACM
SIGCOMM Computer Communication Review, vol. 39, p. 303, 2009.
M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and
S. Shenker, “Deconstructing datacenter packet transport,” Proceedings
of the 11th ACM HotNets workshop, 2012.

Wei, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
agnostic flow scheduling for commodity data centers,” in Proceedings
of the 12th USENIX NSDI, 2015.

A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the
data center network,” in Proceedings of USENIX NSDI, 2011.

E. Zahavi, A. Shpiner, O. Rottenstreich, A. Kolodny, and I. Keslassy,
“Links as a Service (LaaS),” in in Proceedings of IEEE ANCS, 2016.
D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant
is change: Incorporating time-varying network reservations in data
centers,” in Proceedings of ACM SIGCOMM, 2012.

D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail :
Reducing the Flow Completion Time Tail in Datacenter Networks,” in
ACM SIGCOMM, pp. 139-150, 2012.

W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-service
multi-queue data centers,” Proceedings of USENIX NSDI, 2016.

B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown,
I. Abraham, and I. Keslassy, “Virtualized congestion control,” in Pro-
ceedings of SIGCOMM, 2016.

K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter, J. Carter, and
A. Akella, “Ac/dc tcp: Virtual congestion control enforcement for
datacenter networks,” in Proceedings of SIGCOMM, 2016.

M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic
behavior of the TCP congestion avoidance algorithm,” ACM Computer
Communication Review, vol. 27, pp. 67-82, 1997.

B. A. Greenberg, J. R. Hamilton, S. Kandula, C. Kim, P. Labhiri,
A. Maltz, P. Patel, S. Sengupta, A. Greenberg, N. Jain, and D. A. Maltz,
“VL2: a scalable and flexible data center network,” in Proceedings of
ACM SIGCOMM, 2009.

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic,” in Proceedings of IMC, 2009.

T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” SIGCOMM CCR, vol. 40, pp. 92-99, 2010.
V. Jackbson, R. Braden, and D. Borman, “TCP Extensions for High
Performance,” 1992. https://www.ietf.org/rfc/rfc1323.txt.

V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based analysis of a
network of AQM routers supporting TCP flows with an application to
RED,” ACM Computer Communication Review, vol. 30, 2000.

H. K. Khalil, Nonlinear systems. Prentice Hall, 1996.
M. Alizadeh, “Data Center TCP
http://simula.stanford.edu/ alizade/Site/DCTCP.html.
iperf, “The TCP/UDP Bandwidth Measurement Tool.” https://iperf.fr/.

(DCTCP).”

Apache.org, “Apache =~ HTTP server benchmarking tool.”
http://httpd.apache.org/docs/2.2/programs/ab.html.
OpenvSwitch.org, “Open Virtual Switch project.”

http://openvswitch.org/.

Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Understand-
ing TCP incast throughput collapse in datacenter networks,” in Research
on Enterprise Networking Workshop (WREN), 2009.

J. Zhang, F. Ren, and C. Lin, “Modeling and understanding TCP incast
in data center networks,” in IEEE INFOCOM, 2011.

W. Chen, F. Ren, J. Xie, C. Lin, K. Yin, and F. Baker, “Comprehensive
understanding of TCP Incast problem,” in INFOCOM, 2015.

E. Krevat, V. Vasudevan, A. Phanishayee, D. G. Andersen, G. R. Ganger,
G. A. Gibson, and S. Seshan, “On application-level approaches to
avoiding TCP throughput collapse in cluster-based storage systems,” in
Proceedings of Supercomputing - PDSW, 2007.

H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion
control for TCP in data-center networks,” IEEE/ACM Transactions on
Networking, vol. 21, 2013.

[33] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye, scale rdma deployments,” in Proceedings of the ACM SIGCOMM, 2015.
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-

