
HWatch: Reducing Latency in Multi-Tenant Data
Centers via Cautious Congestion Watch

Ahmed M. Abdelmoniem
CSE Dept., HKUST, Hong Kong

CS Dept., Assiut University, Egypt
amas@cse.ust.hk

ahmedcd@aun.edu.eg

Brahim Bensaou and Hengky Susanto
CSE Department

HKUST
Clear Water Bay Hong Kong
{brahim, hsusanto}@cse.ust.hk

Abstract—Modern data centers host a plethora of interactive
data-intensive applications. These are known to often generate
large numbers of short-lived parallel flows that must complete
their transfer quickly to meet the stringent performance re-
quirements of interactive applications. Network resources (e.g.,
switch buffer space) in the data center are scarce and are
easily congested, which unfortunately results in long latency.
As a first solution, following a traditional design rationale,
Data Center TCP (DCTCP) was proposed to speed up the
completion time of short-lived flow by maintaining a low buffer
occupancy in the switch. In general, DCTCP performs well in
homogeneous environments, however, its performance degrades
quickly in heterogeneous environments or when it uses a large
initial congestion window. To resolve this problem, we propose
a Hypervisor-based congestion watching mechanism (HWatch),
which measures the network load in the data center via ECN and
uses the resulting statistics to determine the appropriate initial
congestion window size to avoid congestion. HWatch neither
needs modification to the TCP stack in the VMs nor requires any
specialized network hardware features to meet its targets. In our
evaluation, we demonstrate the benefits of HWatch in improving
the performance of TCP flows through large-scale ns2 simulation
and via testbed experiments in a small data center1.

Index Terms—Congestion Control, DCN, ECN, Hypervisor.

I. INTRODUCTION

In the recent explosive growth of cloud-based and high-
performance computing data-driven deployments, applications
rely on distributed frameworks, such as Hadoop, [1], or
Spark [2] to process massive sets of data. To achieve excellent
performance at the application level, a timely data transfer is
crucial to building scalable and responsive applications, and a
slight delay may lead to significant performance degradation at
the application level [3]. There have been considerable efforts
to address the performance of delay-sensitive applications in
data centers, invoking techniques such as request scheduling,
resource allocation and over-provisioning, or traffic prioritiza-
tion [4], [5], [6], [7], [8], [9]. Nevertheless, these solutions
fall short of their goal in the context of large-scale multi-
tenant environments (with abundant computing resources) as
network congestion is often the primary cause of the application
performance degradation in such environments.

1This work has been accepted for publication in ACM International
Conference on Parallel Processing (ICPP) 2020

Today, TCP is still the most widely used protocol to resolve
the congestion problem in the data centers. Our preliminary
investigation reveals that, with the presence of short-lived and
long-lived flows competing for the limited available resources
(e.g., switch buffer), TCP flows may suffer from bloated buffers
or incast congestion leading to excessive timeouts. These latter
result in significantly longer flow completion times (FCT) for
delay-sensitive flows, which are often short-lived. The reason
behind this is that in the presence of the small shared buffer,
when they experience a packet loss, short-lived flows often do
not have a sufficiently large pipeline of in-flight data packets to
trigger TCP’s duplicate ACKs loss recovery mechanism. This
forces them to frequently rely on TCP retransmission timeout
to detect packet losses. Such timers are hardcoded in TCP
and are typically in the range of 200-300 ms. With a typical
delay of less than 1ms in a large data center, such timeout
delay would inflate the FCT by several orders of magnitude.
DCTCP was introduced to tackle this problem by following
the traditional rationale of keeping the buffer occupancy at
the switches low, as a means to providing allowance in the
buffer to absorb bursty packet arrivals [10], [11], [12], [13].
However, our findings show that despite the availability of the
headroom in the buffer, DCTCP still suffers from packet losses
due to the use of large initial congestion windows by default
in most TCP implementations.

To resolve these shortcomings, we propose our practical
and novel non-intrusive system to achieve performance gains
while meeting the following design requirements: (R1) Our
system must improve the FCTs of delay-sensitive applications;
(R2) It should not degrade the performance of long-lived flows
dramatically like in preemptive systems; (R3) It must comply
with the VM autonomy principle. That is, modifications are
only applied to the hypervisors, that are fully controlled by the
data center operator, without touching the network stack of the
guest VM; and finally, (R4) the solution must be practically
easy to deploy without requiring changes to the switching
devices nor the NICs at the hosts.

To satisfy these requirements, we address the buffer overflow
problem in three phases. In phase one, we introduce an ana-
lytical framework to explore the design space for the solution,
provide a holistic view of the problem, systematically inves-
tigate the complex interaction between network components

(e.g., switch and end hosts), analyze the obtainable information
used for decision making, and determine the decision point.
Additionally, using this framework, we model the buffer
overflow problem as the classic bin packing problem [14],
allowing our design to inherit wisdom from earlier studies of
the same problem.

In phase two, we describe our theoretical approach to provide
guidelines to our system design and implementation with
insights gained from our analysis using the framework. Our
scheme draws inspiration from the Next Fit algorithm, a widely
used solution for the bin packing problem. However, since the
buffer overflow problem is a distributed online problem, we
design a distributed version of the Next Fit scheme to solve
the buffer overflow problem. The key insight to our design is
to perform stochastic information mining from ECN and TCP,
and then use the information to determine how and how many
packets should be transmitted by the senders. By doing so, we
ensure that either there is sufficient buffer space along the path
to accommodate the imminent incast traffic with a standard
initial TCP congestion window, or the looming incast traffic
does not start with a full initial TCP congestion window.

In phase three, we present HWatch, a system whose design
and implementation are based on our theoretical results while
taking into account realistic and practical conditions. The
HWatch prototype is implemented in the hypervisor using
ECN, a built-in function that is commonly available in today’s
commodity switches to access the network traffic condition.
Here, we also address both the practical and engineering
challenges in our implementation and deployment of HWatch
prototype in a small data center.

Through our experiments, we demonstrate that HWatch
improves the performance up to 10× on average in a large
scale simulation and 100% in the testbed experiments.

II. MOTIVATION

A. Preliminary Investigation

DCTCP [10] is one of the most widely accepted congestion
control mechanisms for data center networks. It has been
included in Linux kernel distributions since version 3.18.
DCTCP is an ECN-based congestion controller that maintains a
low queue occupancy as a means of improving flow latency. It
has been analyzed rigorously in theory [15] and in practice [10],
[16]. Although DCTCP achieves good performance gains,
compared to TCP NewReno, it fails in many cases, and in
particular those involving large initial congestion windows and
those where it coexists with other TCP variants.

To demonstrate and highlight such cases, we conduct several
ns2 simulations of DCTCP in a 10Gbps dumbbell network
with an RTT of 100µs and a bottleneck buffer size of 250
packets (which is quite large compared to the 30-35 packets-
per-port encountered in shallow buffered commodity switches).
We first run an experiment of a typical scenario where a few
background flows regulated by DCTCP face at certain epochs
a sudden surge of short-lived (small) traffic flows. To analyze
the effects of the initial sending window, we use various values
of the initial windows and report the FCT of incast flows.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000

C
D

F

Flow Completion Time (ms-logscale)

ICWND=1
ICWND=5

ICWND=10
ICWND=15
ICWND=20

(a) Short-lived flow: Avg FCT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
D

F

No. of Dropped Packets

(b) Total packet drops

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.94 1.96 1.98 2 2.02 2.04

C
D

F

Goodput (Gb/s)

ICWND=1
ICWND=5

ICWND=10
ICWND=15
ICWND=20

(c) Long-lived flow: Avg Goodput

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u

e
u

e
 i

n
 P

k
ts

Simulation Time (s)

(d) Queue occupancy over time

Figure 1: Performance of DCTCP with various initial congestion
window values in the range of [1,20].

Figure 1 shows the average FCT for small flows, the goodput
for long-lived (large) flows, the total packet drops experienced,
and the persistent queue length. The average FCT for small
flows and the number of drops for all flows shown in Figures 1a
and 1b, respectively, indicate that short-lived flows are quite
sensitive to the choice of the value of initial sending window
(ICWND in the figures). The FCT increases by two orders of
magnitude with a window increase from the initial window of
1-5 to 10 and above (noting that 10 MSS is the preset default
value in Linux distributions). The average goodput and queue
size, depicted in Figures 1d and 2a respectively, demonstrate
that DCTCP is good enough for large flows to maintain a low
queue occupancy except at the epoch when small flows surge.

DCTCP employs a non-conventional way of handling the
ECN marking, where the congestion window is reduced
proportionally to the number of marks observed, unlike regular
TCP NewReno or Cubic TCP, which respond by cutting the
window by half once per RTT. The proportional DCTCP
marking results in the more aggressive acquisition of the
available bandwidth compared to regular TCP. Hence, the
coexistence of such TCP flows with various responses to ECN
signaling in the same data center would result in unfairness [16],
[17]. These phenomena are prevalent in current shared data
centers (or clusters) with thousands of tenants, each employing
its preferred version of TCP congestion control. To illustrate
this, we rerun a similar simulation experiment but now with
DCTCP coexisting with other TCP variants (two TCP NewReno
flavors, a responsive one, and a non-responsive one to ECN
marks). Figure 2 shows the average and variance of FCT for
small flows, the goodput for large flows, the total number of
packet drops, and the persistent queue length.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000

C
D

F

Flow Completion Time (ms-logscale)

MIX-AVG
MIX-VAR

DCTCP-AVG
DCTCP-VAR

(a) Short-lived flows: Avg FCT

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u

e
u

e
 i

n
 P

k
ts

Simulation Time (s)

(b) Queue occupancy over time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3

C
D

F

Goodput (Gb/s)

DCTCP-coex
DCTCP

(c) Long-lived flows: Avg Goodput

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

G
o

o
d

p
u

t
(M

b
/s

)

Simulation Time (s)

DCTCP-coex
DCTCP

(d) Link utilization over time

Figure 2: Performance of DCTCP w/wo the existence of other
congestion control flavours within the same network.

Figure 2a indicates that when different congestion controllers
are used, unfairness is observed in the performance. The FCT
varies within a range of two orders of magnitude, taking values
from a few milliseconds to a few hundred milliseconds. The
queue size, shown in Figure 2b, implies that DCTCP is no
longer able to regulate the queue or maintain it at the pre-
set target threshold, which explains the unfairness and poor
performance caused for the majority of both small and long-
lived flows. Figure 2d shows that in both cases, the link is fully
utilized, yet the performance of some flows in the co-existence
case is significantly worse than the other case where DCTCP
operates alone in the network.

B. The root of the problem

Based upon our preliminary investigation discussed above,
we make the following observations:

• Observation 1: Senders do not receive three DUPACKs to
trigger TCP fast re-transmission scheme when the tail-end
packet(s) of the corresponding flow are dropped. Thus, the
sender must rely on TCP Retransmission Timeout (RTO)
to detect packet drops;

• Observation 2: During incast traffic surges, bursts of
packets are dropped because a large subset of the incast
group of flows experiences buffer overflow simultaneously
due to the large initial sending window of TCP. In this
case, the sender may lose the entire window or a large
portion of it. Similar to the previous case, the sender must
rely on RTO to detect packet loss especially if the sender
loses a window-full of packets, leading to a larger FCT;

• Observation 3: This buffer overflow problem primarily
affects small flows as the added TCP timeout (hundreds

Time

Number of packets

Buffer Size

Number of
packets burst

Packets are dropped

Time require to drain packets

Packets
queueing in
the buffer

Number of
existing packets
prior the burst

(a) Burst packets

Time

ECN threshold

Number of packets

Buffer Size

Time require to drain
packet with ECN marking

Batch 2Batch 1 Batch 3 Batch 4

(b) Batches of packet burst

Figure 3: Observation in the switch: Packet bursts and batching

to thousands of RTTs) is in practice orders of magnitude
larger than the flow’s nominal lifetime (a few RTTs).

In a nutshell, during bursty packet arrivals at the buffer,
small flows suffer more from buffer overflow as they would
most likely not have enough in-flight packets to perform TCP
fast recovery, and must rely on RTO. The minRTO in most
TCP implementations is set to around 200ms, which increases
the latency by 2 to 4 orders of magnitude compared to the
usual RTT in data center networks. The system performance
degradation in the data center becomes more visible when
the network traffic is dominated by small flows (e.g., 80%
to 95%) [10], [18], [19], [6]. In other words, small flows
are highly affected by packet dropped. The degradation is
further amplified when one of the flows experiences delay, and
the application relies on a parallel set of short-lived flows to
finish together for the job to complete [19], [20], [21]. This
delay leads to longer job completion times despite other flows
from the set complete timely, which results in performance
degradation at the application level.

To resolve these problems, we propose a solution that
consists of the following properties:

1) To avoid having an insufficient number of packets to
trigger three DUPACKs, the source sending rates are
adjusted whenever there is a feedback from the network
that congestion (i.e., a pre-configured buffer threshold is
exceeded); and

2) To avoid a sender losing a window-full of packets or a
large proportion of it, the sources’ start-up speeds should
be determined according to the current approximated
congestion status in the network.

III. ANALYTICAL FRAMEWORK

In this section, we explore analytically the design space for
the solution. Specifically, we first provide a holistic perspective
of the problem then systematically evaluate the complex
interactions between network components (switch, sender, and
receiver), then analyze the available information used for
decision making by mining information from ECN and TCP.

A. Switch Buffer

To understand the packet drop phenomenon in DCTCP, we
first investigate how packets are managed in the switch during
an occurrence of incast or packets burst.

Generally, with respect to ECN-based congestion control
schemes, packets can be grouped into the following categories:

1) Packets with ECN marking. 2) Packets without ECN marking.
3) Packets dropped due to buffer overflow.

Let us consider the scenario of a switch buffer of size B
packets, where X packets for X > B arrive at approximately
the same time t. Denote by Q(t) the queue length at time t.
Then we have, the first B−Q(t) packets will be queued in the
buffer, whereas the next X −B +Q(t) packets are dropped
due to buffer overflow. Notice that as time proceeds, more
packets are processed, and there is more space made available
in the buffer, as illustrated in Figure 3a. In other words, buffer
can absorb more packets as space becomes available. The time
required to drain the entire packets that are currently queued in
the buffer (including Q(t)) is B

C , where C denotes the packet
processing capacity at the switch. Thus, the switch can absorb
another B packets after B

C time unit.
To mitigate buffer overflow, X packets can be broken into

smaller batches of packets and each batch is transmitted at
the time whenever buffer space becomes available. For the
sake of clarity, we use a simple example as an illustration:
assume there are only X packets traversing to a switch with
size B. Then, one way to mitigate buffer overflow is to break
X into dX−(B−Q(t))

B e + 1 batches and each batch arrives at
the switch after the earlier batch is drained. By using ECN and
other traffic statistics collected at the sender and receiver, we
can estimate the level of congestion and distribute the excess
traffic over several batches to avoid packet losses as depicted
in Figure 3b.

We further observe resemblance between the concept of
distributing packets into multiple batches to be transmitted
at different times to avoid buffer overflow with the classic
bin-packing problem. It is a problem of packing a set of items
into a finite number of containers (bins) with a fixed volume to
minimize the number of containers used. The concept of items
and containers in the bin-packing problem can be visualized
as the problem of packing packets into buffer at different time.
For example, the tth container can be visualized as the buffer
space at time t. Additionally, the objective of the bin-packing
problem can be perceived as minimizing the number of batches
required to mitigate buffer overflow. Thus, the key intuition
behind the modeling of buffer overflow problem is to visualize
the buffer in a timeline allowing the scheme to treat the buffer
state (e.g., buffer occupancy) at different times as containers
in the bin packing problem. By doing so, our scheme draws
inspiration from one of the classic solutions for bin-packing
problems, such as the Next Fit algorithm.

The Next Fit algorithm evaluates whether the current item
(or packet) fits the current bin (buffer stage). If so, then the
algorithm places the item in the current bin. Otherwise, the
algorithm puts the item in a new bin (i.e., send the packet later).
One of its desired traits is that it can operate with incomplete
information, which is vital in solving an online distributed
problem like congestion control. Additionally, it has a linear
running time, which is suitable for delay-sensitive applications.
Essentially, the algorithm only concerns itself with the current
packet and buffer stage, allowing for shorter FCTs.

B. Receiver

A receiver has a naturally appropriate position to evaluate
information carried by ECN packets from inbound traffic. For
example, by checking the Differentiated Services Code Point
(DSCP) field in the TCP header, the receiver can count the
number of packets with and without ECN marking. Other
information available at the receiver is the inter-arrival time
between two packets and the time required to receive a
specific number of packets (e.g., 10 packets). By analyzing this
information, the receiver can determine its sender’s maximum
throughput.

C. Sender

There is a wealth of information available at the sender. The
sender is aware of the number of transmitted packets, the inter-
departure time, congestion window size, RTT, transmission
time of a set of packets, number of re-transmitted packets, and
so on.

In addition, the sender can also assess the flows’ contribution
to the current and future congestion in the network. This
assessment is achieved by counting the number of packets that
have been and are ready to be transmitted. For these reasons,
the sender makes a good candidate for decision point allocation.
Moreover, this allocation also ensures the compatibility of our
scheme with the existing commodity switches, which makes
our scheme more practical and deployment friendly.

The combination of information gathered from both the
sender and receiver provides a sender with a richer and more
holistic view of the network condition. For instance, the number
of packets dropped can be approximated by subtracting the
number of packets received by the receiver from the total
number of transmitted packets by the sender. Another example
is the congestion severity can be estimated by comparing the
time required by the sender to transmit the entire packets in
the congestion window and the time taken to receive these
packets at the receiver’s end.

In our implementation, the receiver conveys information to
its sender by inserting information observed locally into several
fields in TCP header of the ACK packet. For example, TCP
receiver window (Rwnd) is utilized for communicating the
number of packets received without ECN marking. And, the
16-bits Urgent Pointer field (UPF) could potentially be used to
convey the number of packets received at the receiver within
a specific interval. The UPF is usually unused and URG flag
for UPF is set to zero in ACK packets.

D. Further Observation

To consider more realistic conditions, we assume sender
and receiver have no information on switch buffer size and
capacity. Moreover, we also do not assume that switches at
different layer of network topology used in data center (e.g.
FatTree or Clos [22]) have uniform processing capacity.

Let C denote a switch processing capacity. When two
packets, i and i + 1, of the same flow queue in an empty
buffer, the time interval between these two packets leaving the
switch is determined by the time required to process packet

i+ 1, which is 1
C . In contrast, when the network is congested,

there is a higher probability that there are other packets from
different flows queued between these two packets. If so, then
the time interval increases. This is because packet i+1 can only
be processed after all packets ahead of it in the queue (including
packet i) are processed. For these reasons, packets of the same
flow can become distributed in the queue. Moreover, same
situation arises when there are other packets from different
flows queueing between the packets of a certain flow. For
instance, there are three packets of a flow queueing in a same
buffer, packet i, i+1 and i+2. When incast occurs, packet i is
at the head, while packet i+1 and i+2 are in the middle and
the back of the queue respectively. Therefore, the congestion
severity in the network can be stochastically approximated by
analyzing the time interval of packets of a certain flow from
the sender and the time interval of the same packets arriving
at the receiver. Intuitively, if the inter-arrival times are longer
than usual, then congestion may have occurred.

IV. THE PROPOSED METHODOLOGY

In this section, we present our theoretical approach to
guide our system design, which incorporates findings from
our preliminary analysis and the analytical framework.

A. Design Setup

Before we present our proposed solution, we first discuss the
buffer size of a switch, which is modeled as the container size in
the bin packing problem. In practice, the buffer size B is usually
determined according to an established general rule of thumb
B = RTT × C [23], which is the bandwidth-delay product.
RTT denotes the average round trip time. Although the rule of
thumb is established for the Internet and the recommended size
for data center network is 3×RTT ×C, the typical buffer size
used in commodity switches that are deployed in a production
data center usually follows the general rule of thumb [10],
[24]. This rule also provides the sender with an important clue
of how much data can be transmitted into the network without
resulting in packet drop.

Traffic in the data center generally follows a certain pattern,
which is usually determined from the application level. There-
fore, to ensure the robustness of our design, we consider traffic
patterns that are common in the data center network. Studies
in [18], [25] show that the traffic in data centers has ON-OFF
patterns. That is, many links run hot for certain periods but are
idle at other times. And, in other cases, the data center traffic
is continuous [26].

B. Theoretical Solution

Here, we present our theoretical approach, which lays
its bases on the Next Fit algorithm, such that each sender
determines its transmission rate to avoid buffer overflow.

From the bin-packing perspective, the minimization of the
number of “bins” can be interpreted as minimizing the number
of rounds that a buffer is filled up with packets and drained.
Our scheme assumes the sender and receiver do not have all
the information about switch state (e.g., buffer size, queue

Time

CWND

W*+1

The period of oscillation

The amplitude
of oscillation in
window size

W*

(a) Congestion window size

Time

Queue size

The period of oscillation

The amplitude of
oscillation in queue size

K

(b) Queue size in buffer

Figure 4: Observation in the switch: Window and queue size

length, etc.). Therefore, ECN is used to cue the senders on
the buffer state (e.g., queue length). Hence, the sender attains
crucial information on the number of packets marked and
unmarked by ECN. Consequently, we consider the following
two scenarios.

Scenario 1. The receiver provides its sender with information
on the numbers of packets without ECN marking. One way
to accomplish this is to convey the information through TCP
receiver window (TCP Rwnd) in the ACK packet. Let Q, K,
and B denote the queue length, ECN threshold, and buffer size,
respectively, such that 0 ≤ Q ≤ B. We use K = 1

7×RTT×C
for 0 < K < B, which is the recommended threshold by
DCTCP [10]. Let Xf

UM denote the number of packets of flow
f unmarked by ECN and assume there are n flows sharing the
same congestion point (CoP) in DCTCP, for f ∈ n.
Theorem IV.1. Buffer overflow caused by incast can be
mitigated when each flow f , that shares the same CoP, transmits
at most Xf

UM .

Proof. We first consider different cases of traffic with the
ON-OFF mode pattern.

Case 1. Each flow f ∈ n transmits Xf
UM amount of packets to

an empty buffer (OFF mode pattern). The queue length formed
by n flows is upper bounded by

Q =

n∑
f=1

Xf
UM =

1

7
×RTT × C,

which is also K. Hence, the queue length Q ≤ K < B.

Case 2. The initial traffic at CoP buffer is exactly K (ON
mode pattern) before the arrival of traffic from n flows. Then,
when the traffic from n flow arrives, each flow f ∈ n transmits
Xf

UM . Thus, Q = 2×K = 2
7 ×RTT ×C, which is Q < B.

Case 3. The initial queue size Qinit at CoP buffer is larger
than K (ON mode pattern) before the arrival of traffic from n

flows. We have Qinit = K+
n∑

e=1
he, where he > 0 denotes the

adaptive congestion window increase step of a long-lived flow
e. Let W ∗

e be the critical window size of the long-lived flow
at which the queue size reaches K, as illustrated in Figures 4a.
We have W ∗

e = K
N , where N is the number of long-lived flows.

Then, W ∗
e = (17 × C ×RTT)/N .

Let’s assume W ∗
e = 1, which is also the minimum window

size. In other words, this can be interpreted as there are many
flows sharing the same link. Let the increase step he = 1

(Figures 4a), which is also the same increase step used in the
original liturature [10]. When W ∗

e is increased by he, we
have W ∗

e =W ∗
e + he of which now W ∗

e = 2. Therefore, the

additional traffic generated by the increase step is
N∑
e=1

he ≈
1
7 × C ×RTT , which is also an approximation of K. Then,
Qinit ≈ 2

7 × C ×RTT , which is approximately equivalent to
2×K. As we have demonstrated in case 1 that the total traffic
from n flows transmitting at Xf

UM is K, the maximum queue
length with additional traffic from n flows is

Qmax = Qinit +K ≈ 3×K =
3

7
× C ×RTT,

which is 3K (Figures 4b). Hence, Q = Qmax ≤ B.
Next, lets consider the scenario when W ∗

e > 1. This can be
interpreted as there are less number of flows sharing CoP such
that N is smaller than in the previous scenario with W ∗

e = 1.

Then,
N∑
e=1

he decreases as N decreases, for he = 1. Hence,

Q < 3×K, which is also less than B.
The analysis of the case when the traffic pattern is continuous

is similar to cases 2 and 3.

We have shown that n flows transmitting packets at Xf
UM does

not lead to a buffer overflow.
Scenario 2. Let Xf

M be the number of packets with ECN
marking associated with flow f . Assume there are n flows
sharing the same CoP, where each flow f is transmitting at
most at Xf

M . Also, let XM denotes the sum of packets with
ECN marking from n flows sharing the same CoP.

Theorem IV.2. To avoid Buffer overflow, Xf
M should be

divided and transmitted in two batches at different times.

Proof. The total number of packets with ECN marking XM

transmitted by n flows sharing the same CoP is

XM =

n∑
f=1

Xf
M ≤ B −K.

In other words, B ≥ XM+K. Next, we consider the following
cases.
Case 1. When the buffer is empty (OFF mode pattern), the
queue length Q after the arrival of traffic from n flows, with
each flow f ∈ n transmitting at Xf

M , is Q = XM , which is
Q < B.

Case 2:. When the initial queue size is exactly K (On mode
pattern), then Q after the arrival of traffic from n flows, with
each flow f ∈ n transmitting at Xf

M , is Q = XM +K, which
means Q = B.

Case 3. Let us consider when the initial queue size exceeds
K (On mode pattern). As demonstrated in Theorem IV.1, the
maximum queue length before the arrival of traffic from n flows
is approximately 2×K. So when each flow f is transmitting
Xf

M packets, the queue length becomes XM + 2 ×K > B.
In other words, the traffic increases by K, which results in
packet drop due to a shortage of buffer space.

However, if each flow reduces its number of transmitted
packets by K

n , such that the total number of transmitted packets
per flow is reduced to Xf

M−
K
n , then the queue length is reduced

to XM −K +2K, which is B. Thus, to avoid buffer overflow,
a volume of traffic of size K must be transmitted at a different
time. In other words, Xf

M must be transmitted in two batches
(or two rounds), each batch of size 1

2 ×X
f
M . In a special case

when Xf
M = 1, the packet is randomly placed in one of the

batches with probability 1
2 .

The analysis for traffic with a continuous pattern is similar
to case 2 and 3.

Corollary IV.2.1. The packets must be transmitted in three
batches (rounds) to mitigate buffer overflow caused by incast,

Remark. Here, corollary IV.2.1 suggests transmitting a batch of
packets based on the number of packets without ECN marking
and two other batches of packets based on the number of
packets with ECN marking.

Corollary IV.2.2. The completion time can be shortened by
transmitting the first and second batch together.

Proof. As shown in Theorem IV.1, the queue length Q when
traffic pattern is in ON mode and part of the buffer is occupied
by 2K packets. Together with traffic from the first and second
batch, we have Q = 2K + K + (B − K)/2. That is Q =
6
7 × C ×RTT . Hence, Q < B.

Lemma IV.3. Three batches of packets can be delivered within
2 RTTs.

Proof. Consider a network topology, which only consists of
a pair of sender and receiver connected by a single switch.
For simplicity, we disregard the propagation delay. Let T be
the time required to drain a full buffer. So the time required
to drain the first batch in the switch is at most T , which is
also the time when the first batch reaches the receiver. That
is 1

2RTT . At one RTT , which is equivalent to 2× T , ACKs
from the first batch arrive at the sender. It is also the time when
the second batch reaches the receiver. At the same time, the
sender begins transmitting the third batch. Afterward, the ACKs
from the second and third batch arrive at the sender at time
3×T and 4×T after the first batch is transmitted, respectively.
Since T ≈ 1

2RTT , the delivery requires 4× 1
2RTT , which is

2 RTTs.

Corollary IV.3.1. When a path connecting a pair of sender-
receiver with at least three hops, the three batches can be
completed in at most RTT + 2T .

Proof. It takes a single RTT for the ACKs of the first batch
of packets to reach the sender. Since the interval between two
batches is at most T , the ACKs from the second and third
batch arrive at the sender at T and 2× T after ACKs of the
first batch arrives. Thus, it is at most RTT + 2× T .

Remark. The critical insight to our methodology is that our
scheme utilizes ECN signal to implicitly inform its senders on
how many and how packets should be transmitted. Different

Hypervisor

NIC

Flow# ECN

S1:D1 7

S2:D2 3

Receiver

S1:data S3:data

ECN-ECHO

Sender

S3:D3 5

S2:data

VM2 VM1VM3

S1-D1S2-D2S3-D3

IN Hook

P
re

_R
o

u
te

Ip
_r

cv

OUT Hook

P
o

st
_r

o
ut

e

Ip
_f

in
is

h

rwnd_update

D1:ACK D3:ACKD2:ACK

H-WATCH

ECN

Figure 5: HWatch system is an end-host module that controls TCP
receive window values.

from other ECN based techniques (e.g., DCTCP and ECN-
RED), the switch only provides binary signal whether the
network is congested or not.

In the next discussion, we address the practical challenges
in designing and implementing our theoretical solution in a
deployable system. Also, we explain how to determine both
Xf

M and Xf
UM in practice.

C. System Design

Here, we describe our system design of HWatch based
upon the theoretical results. HWatch is an end-to-end solution
implemented in the hypervisors that measures the congestion
level using configurable network congestion signaling; and
controls the transmission speed by adjusting the TCP receiver
window of the ACK segment headers according to the measured
congestion level. HWatch employs ECN, a built-in function
readily supported by existing commodity switch hardware, to
detect and measure congestion level in the network. Thus,
HWatch is also a readily deployable scheme that is compatible
with legacy TCP because it is a hypervisor-based solution that
relies only on built-in functions in existing hardware. HWatch
imposes the following simple mechanisms: 1) Throughout
data transfer, HWatch observes the network congestion level
and adjusts the sending speed accordingly. 2) On Connection
start-up, HWatch measures congestion status in the network to
fix the appropriate start-up sending rate.

To realize these, HWatch respects the following control
rules: Rule 1: To avoid the bloated queue in the switches, ECN
and flow throttling are used to handle the continuous flow
of ECN marks received by the long-lived steady-state flow,
leading the associated sender’s hypervisor to adjust the receiver
flow control window in the ACKs. This reduces the long-lived
flow’s sending speed. Rule 2: For the short-lived flows to
avoid incast, the senders’ hypervisor infers the congestion level
during connection setup from the SYN/SYN-ACK packets
and if available from any other packets flowing between
the sender/receiver. Then, the receiver determines its receiver
window according to the number of probing packets marked
by ECN, and the receiver communicates its receiver window
size to the sender through the returning SYNACK packet.

HWatch us deployed at both the sender’s and the receiver’s
hypervisor as shown in Figure 5. Generally, to tackle the

problem when flow does not receive three DUPACKs to
trigger TCP fast re-transmission, the sender transmits standard
TCP packets into the network. However, in the presence of
congestion, the receiver determines the size of its receiver
window (Rwnd) in proportion to the number of packets
unmarked and marked with ECN marking. After that, the
receiver communicates the size of Rwnd to the sender via the
returned ACK packets.

HWatch tackles the issues when packets are dropped due to
buffer overflow triggered by the large initial sending window
of TCP. It infers network congestion from ECN marks in
SYN/SYN-ACK packet and any other packets already flowing
between the source-destination pairs. Also, it may inject raw
IP dummy packets from hypervisor-to-hypervisor before the
SYN packet to have a more accurate measure of the congestion
level in the network. The dummy (probe) packets will carry
the ECN marks to the receiver in the case of congestion. Then,
the receiver applies the window re-sizing scheme directly in
proportion to the number of packets untagged and tagged
with ECN congestion marks, and then conveys it to the sender
through the ACK packets. In other words, HWatch compensates
short-lived flows having insufficient in-flight packets to probe
the network and trigger duplicate ACKs to signal packet loss
(e.g., losing the entire or large proportion of the window).

However, without careful consideration of what the probe
packet size should be, the probing mechanism may unneces-
sarily overload the network with the probe packets. To resolve
these issues, we use the following probe packets:

1) Probe1: Probe packet with at least zero Bytes of payload
(or raw IP packets) of size less than or equal to 38 bytes
(i.e., ETH (18 Byte) + IP (20 Byte) headers + Payload ≥
0), and;

2) Probe2: The data packets, generally filled with payload
of size 1500 bytes, are used as the probes for later rounds.

Probe1 is to ensure the probing mechanism has minimal
impact on the network performance during the connection
establishment. However, to have a continuous flow of probe
packets for after connection setup phase, HWatch utilizes both
Probe1 and Probe2 packets together to measure the network
condition throughout the flow life-time.

We note that the accuracy of the queue occupancy estimation
during the connection setup might be dependent on the
number and inter-departure times of the initial probes (Probe1).
HWatch scheme seeks to balance the probing accuracy while
minimizing the unwanted impact on network performance. This
can be achieved by using the small 38-byte raw IP packets
and adding non-uniform delay among the probes so that their
inter-departure times are not zero nor uniform.

The number of probing packets used is determined by the
operators according to the definition of short-lived flows or
the default initial window size. In our experiment, the Linux
default initial window size is set to 10. Thus, we same value for
the probes at the connection setup and so each flow transmits
10 probing packets of type Probe1. The inter-departure times
for probe packets can be pre-set by the operator or drawn
from a random non-uniform number. The total transmission

time for all probes need to be within a bounded range so as
not cause severe delay for connection setup (or hand-shake)
process (e.g., a reasonable value would be RTT/2 worth of
delay before sending out the SYN).

D. System Implementation

In our implementation, HWatch scheme is realized in the
Hypervisor-level shim-layer data processing path of data center
end-hosts (servers) of both the sender and receiver. The
realization is accomplished in the following two ways:

1) by implemented a Kernel Module that utilizes the NetFilter
framework [27] to intercept and process the arriving and
outgoing packets as depicted in Figure 6; or

2) by expanding the data-path of the virtual switch (e.g.,
Open vSwitch [28]) with HWatch modules as shown in
Figure 7.

In both approaches, HWatch modules and the shim-layer
implementation have sender and receiver version. One module
processes incoming and outgoing packets, including handling
the events of SYN, SYN-ACK, and ACK packets, as well
as timer expiry. In HWatch, all traffic from and to the guest
VMs goes through HWatch modules for further inspection and
processing. The Rwnd and checksum field are updated with
new information according to the conditions observed through
SYN-ACK at the receiver or the ACKs at the sender. Then,
HWatch forwards the new ACK or SYN-ACK. HWatch utilizes
token buckets to pace between batches of SYN-ACK packets.

At the connection-setup stage, HWatch module hashes the
flow, retrieves the relevant information, and stores it into
a flow-table indexed by the flow’s 4-tuples (i.e., source IP,
dest. IP, source Port, and dest. Port). Also, HWatch stores
other various information, including the number of non-ECN,
ECN marks, the window scale factor, and so on. Flow table
entries are cleared when the connection is terminated (i.e., FIN
packet is received or sent by a guest VM). Information in the
receive window field is updated when the end-hosts have a new
TCP checksum value. The shim-layer (or module) is allocated
directly above the NIC driver for a non-virtualized setup and
directly below the hypervisor to provide effective supports to
VMs in the data center.

In both cases, the module or the shim-layer is implemented
at both the sender and receiver. That is the module would
implement one function for incoming and outgoing processing
which handles the events of SYN, SYN-ACK and ACK packets
arrival and timer expiry. In HWatch, all incoming and outgoing
traffic to the guest VMs pass through HWatch module for
further processing. When the conditions for modifying either
the SYN-ACK at the receiver or the ACKs at the sender are met,
the receive window and checksum field are updated and the
new ACK or SYN-ACK are forwarded. The HWatch module,
at connection-setup, hashes the flow, extracts the relevant
information and stores it into a flow-table indexed by the
4-tuples of the flow (i.e., source IP, dest. IP, source Port and
dest. Port). It stores various state information including the
window scale factor, number of non-ECN, ECN marks, and so
on. Flow entries are cleared from the table when the connection

Local TCP/IP stack

RoutingPrerouting
Forward HWATCH Hook

(packet interceptor)

Input
Output

Postrouting

TCP Flow Table
ECN tracking

RWND Update

Figure 6: HWatch is implemented via netfilters by inserting hooks
into the forward processing path of incoming and outgoing packets

is closed (i.e., FIN is sent by a guest VM). TCP check-sum
value is recalculated the at the end-hosts whenever the receive
window field is updated. The shim-layer (or module) resides
right above the NIC driver for a non-virtualized setup and right
below the hypervisor to support VMs in cloud data centers.

HWatch is implemented as a loadable Linux kernel module
via the NetFilter packet processing mechanisms [27]. The
system adds hooks that attach to the forward processing path
of the TCP/IP stack in the Linux kernel. Since the built module
is loadable, deploying HWatch into the host operating system
means the TCP/IP implementation of the guest operating system
remains intact. Figure 6 shows that the NetFilter hooks are
inserted into the forwarding stage of packet processing. The
hook intercepts the entire forwarded (incoming/outgoing)/ TCP
packets not destined to the host machine. When TCP packets
are intercepted, their headers are checked, and their intended
processing is determined based on its type (i.e., whether it is
SYN-ACK, FIN, and ACK packet).

HWatch implementation can also be incorporated into virtual
switches employed by most hypervisors for the purpose of
inter-connecting the guest VMs to the physical network. As
shown in Figure 7, OpenvSwitch (OvS) can be patched to
modify its Kernel data-path modules with the mechanisms of
HWatch described in Section IV. For OvS implementation,
there are no NetFilter hooks uses. However, HWatch’s flow
table, ECN tracking, and window update functions are added to
the packet processing logic of the kernel data-path module of
OvS. In virtualized data centers, OvSes patched with HWatch
can process the traffic for inter-VM, Intra-Host, and Inter-
Host communications. The method of deploying HWatch in
production data centers can be done efficiently by applying
the HWatch patch and then recompiling the OvS Linux kernel
module.

E. Practical Challenges

In the following discussion, we demonstrate that HWatch is
a relatively simple solution that is capable of resolving non-
recoverable packet losses and achieve satisfying performance
in various simulation scenarios. For instance, HWatch reduces
the average and variance of FCT among small flows compared
to existing proposals. Since HWatch is a hypervisor-based
solution, it does not require any modification of the network
stack in the guest OS, allowing our solution to be more readily

vSwitch daemon

flow_lookup

receive_from_vport

action:do_output
(Packet Interceptor)

send_packet_to_vswitchd handle_packet_cmd

send_to_vport

new

TCP Flow Table
ECN tracking

RWND Update

extract_key action_execute

User Space

Kernel Datapath

Figure 7: HWatch can be realized by modifying the OpenvSwitch
(OvS) kernel datapath module (i.e., adjust the flow table processing)

deploy-able in the current production data centers without
major interruption to the system.

One of the practical challenges to overcome is the use of
window scaling TCP. As described in TCP specifications [29],
the scaling is achieved via means adding a three-byte scale
option field to the TCP header in all segments. Otherwise, the
scale value is exchanged at the stage of connection-setup during
the SYN segments exchange. For reducing overhead reasons,
most OS implementations, including Linux adopt the latter
approach. Practically, scaling the window may be unnecessary
for networks with Bandwidth-Delay Product (BDP) less than
31.25 KByte (i.e., 1 Gb/s for an RTT of 250µs). However,
when links operate at higher speeds of 40 Gb/s (i.e., BDP=1.25
Mbyte) or 100 Gb/s (i.e., BDP=3.125 Mbyte), scaling the
window becomes essential for efficient bandwidth utilization.
Hence, in HWatch design, the flow table also keeps track of
the scale factor exchanged during the connection setup of
TCP flows. Then, the sender and receiver could use the stored
scaling factor to re-scale the incoming and outgoing receive
window field respectively before and after updating the TCP
receive window field.

HWatch relies on congestion feedback from the network
to infer the congestion level (e.g., ECN marks). Hence the
efficiency of it relies on the appropriate setting of the marking
thresholds in the routing devices [30]. RED is the AQM used
for enabling ECN marking in the switches and is commonly
available in the entry-level data center switches. However,
RED is known to be sensitive to the parameter settings [31],
[32]. [31] gives a guideline on the right RED parameter
setting. However, the choice of these settings depends on the
characteristics of the underlying network (e.g., link speeds,
buffer size, and the RTT). HWatch also relies on Weighted
RED AQM for ECN marking, and its settings are inherited
from recommended DCTCP [10]. In this setting, the low and
high marking thresholds are set so that packets are ECN marked
if the instantaneous queue occupancy exceeds the quarter of the
buffer size. We follow the recommended DCTCP settings as it
has been shown to perform well in data centers analytically [33]
and practically [10].

F. Mutipath TCP (MPTCP)

HWatch can be extended to improve the performance of
MPTCP [34], which is a variant of TCP that allows a single
connection to use multiple paths simultaneously. MPTCP opens

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

C
D

F

Response Time (ms)

TCP-DropTail
TCP-RED

TCP-HWATCH
DCTCP

(a) Short-lived flows: Avg FCT

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 35 40 45 50 55 60

C
D

F

Goodput (Gb/s)

TCP-DropTail
TCP-RED

TCP-HWATCH
DCTCP

(b) Long-lived flows: Avg Goodput

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e

rs
is

te
n

t
Q

u
e

u
e

 i
n

 B
y

te
s

Simulation Time (s)

TCP-DropTail
TCP-RED

TCP-HWATCH
DCTCP

(c) Persistent queue over time

 10

 12

 0 0.2 0.4 0.6 0.8 1

G
o

o
d

p
u

t
(G

b
/s

)

Simulation Time (s)

TCP-DropTail
TCP-RED

TCP-HWATCH
DCTCP

(d) Bottleneck utilization over time

Figure 8: Performance of short-lived and long-lived flows in 50
sources scenario

multiple TCP connections between a sender and a receiver.
The first connection in MPTCP is performed according to a
regular TCP connection establishment scheme. After that, the
additional TCP connections are established one by one with an
extra step to bind with the first connection. Thus, since every
connection establishment in MPTCP relies on TCP, HWatch
logic can be directly applied to MPTCP. We leave the extension
of this study for future work.

V. SIMULATION ANALYSIS

In this section, we evaluate the performance of HWatch in
a large-scale data center network. We conduct simulations in
ns2 and compare HWatch with the state-of-the-art schemes.

The number of probes used in HWatch is set to 10, which
is chosen so that the overhead level can be tolerated. The
ECN marking threshold on the switches is set to 20% of the
buffer size. The parameters of DCTCP and TCP-RED are set
according to the recommended settings by their authors [10],
[31]. We use ns2 version 2.35 [35], which we have extended
with the HWatch module, and it is installed as a new processing
layer (like hypervisor) on the end-hosts. We compare TCP
NewReno with Droptail, TCP-RED, DCTCP, and TCP with
HWatch module. For DCTCP, we use a patch for ns2.35
available from the authors [36]. ECN-bit capability is enabled
on the switches as well as both the TCP sender and receiver.
Here, our experiments utilize high-speed links of 10 Gb/s
for sending stations, a bottleneck link of 10 Gb/s, low RTT
of 100 µs, and RTOmin of 200 ms. We had to modify the
TCP implementation in ns2 because there is no flow-control
(or receiver window processing), which is different from the
standard TCP implementation.

Simulation Results: We simulate various scenarios with
50 sources, which consists of 1:1 long-lived to short-lived
TCP flows ratio. These scenarios combine the effects of incast

congestion resulting from the short-lived flows and buffer-
bloating resulting from the pressure of the long-lived flows.

The flows start at the beginning and keep sending at full
speed during the whole simulation period. The small flows
initiate 6 epochs of data transfer during the whole simulation.
In each epoch, the short-lived flows each flow transmits 10
KBytes of data in random order. The inter-arrival time between
two consecutive short-lived flows is randomly selected with
an average equal to the transmission time of a single segment.
By doing so, the simulator generates the incast problem where
short-lived flows starting time are correlated. We analyze the
CDF of the average flow completion time (FCT) of short-lived
flows over the incast rounds, the persistent queue size, the
goodput of long-lived flows, and the link utilization.

Figure 8 shows the results of this experiment. Figure 8a
shows that HWatch improves the average FCT for short-lived
flows compared to other schemes. That is 3×, 5×, and 10×
improvement compares to DCTCP, TCP-RED, and DropTail,
respectively. The results indicate they can avoid losses and
hence expensive RTO. Figure 8b demonstrates that the goodput
of long-lived flows achieves almost the same results as DCTCP,
which is a result of regulating receive window for these long-
lived flows. Figure 8c shows that HWatch can control queue
occupancies at the targeted low threshold levels, and Figure 8d
shows that the bottleneck link is fully utilized with HWatch
like other schemes.

To study the scalability of HWatch, we repeat the same
experiment while doubling the number of sources to 100. Fig-
ure 8 depicts the outcome of our experiments. Figure 9a further
illustrates that HWatch can significantly improve the average
FCT for all short-lived flows and avoid the consequences of
timeout (i.e., no FCT exceeds tens of milliseconds). This is
because HWatch is capable of mitigating packet drops caused
by buffer overflow and delivers packets in fewer RTTs (e.g.,
avoid re-transmission). Moreover, Figure 9b, 8d and 9d match
the findings of previous scenario regarding long-lived flows’
goodput, queue occupancy and link utilization.

Discussion: The favorable HWatch’s performance is due to
the following reasons. First, dispersing packets transmission at
different creates in smaller size of incast allowing the buffer
to observed the incoming packets and mitigate packet drop
problem, which results in faster FCT, especially the short-lived
flows. Secondly, another insight is that packet(s) of the smaller
short-lived flow (e.g., a flow with one or two packets) can be
transmitted and completed in the first batch. In contrast, some
of packets belongs to larger short-lived flows are transmitted
later in batches two and three so that these flow consume
less resources. By doing so, HWatch stochastically prioritizes
the available buffer space to smaller short-lived flows. Thirdly,
HWatch’s probing mechanism functions as incast early warning
system allowing long-lived flows that are actively sending data
to scale back and reduce the transmission rate to release some
buffer space This is achieved when some packets of the active
flows are marked by ECN during the probing. By doing so,
HWatch strikes the balance between improving the performance
of short-lived flows while keeping minimum impact to the long-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
D

F

Response Time (ms)

TCP-DropTail
TCP-RED

TCP-HWATCH
DCTCP

(a) Short-lived flows: Avg FCT

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35

C
D

F

Goodput (Gb/s)

TCP-DropTail
TCP-RED

TCP-HWATCH
DCTCP

(b) Long-lived flows: Avg Goodput

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e

rs
is

te
n

t
Q

u
e

u
e

 i
n

 B
y

te
s

Simulation Time (s)

TCP-DropTail
TCP-RED

TCP-HWATCH
DCTCP

(c) Persistent queue over time

 10

 12

 0 0.2 0.4 0.6 0.8 1

G
o

o
d

p
u

t
(G

b
/s

)

Simulation Time (s)

TCP-DropTail
TCP-RED

TCP-HWATCH
DCTCP

(d) Bottleneck Utilization over time

Figure 9: Performance of short-lived and long-lived flows in 100
source scenario

(a) The real testbed
Rack 1 Rack 2 Rack 3

Core

ToR

Rack 4

NetFPGA
Switch

1 Gb/s

(b) Testbed Topology

Figure 10: Real testbed used in the experiments

lived flows.

VI. TESTBED EXPERIMENT RESULTS

A. Testbed Setup

To put HWatch to the test, we utilize a testbed consisting
of 84 virtual servers interconnected via 4 non-blocking leaf
switches and 1 spine switch in our mini data center.

Our testbed, as shown in Figure 10, has 4 racks (rack 1, 2,
3 and 4). Each server per rack is connected to a leaf switch
via 1 Gbps link. The spine switch is realized by running
a “reference switch” image on a 4-port NetFPGA card [37],
which is installed on a desktop machine. The network’s base
RTT is around 200 microseconds. The servers run Ubuntu
Server 14.04 LTS with Linux kernel v3.18.

The HWatch end-host module is invoked and installed on the
host OS whenever necessary only. HWatch runs with the default
settings (i.e., RTO of 4ms). A traffic generator is employed
to run the experiments which generate short-lived traffic (i.e.,
parallel web-page requests from Apache web servers hosting
an object of size 11.5KB). In addition, we utilize the iperf
program to generate long-lived traffic (e.g., VM migrations,
backups).

We set up a scenario to produce both a collision between
suddenly arriving short-lived and long-lived flows situation with
bottleneck link in the network being at the network core. The
traffic is generated from and to iperf and/or Apache client or

200 400 600
AVG Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
TCP-HWatch
TCP

(a) Short-lived flows: Avg FCT

10 15 20 25
Elpehant Goodput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP-HWatch
TCP

(b) Long-lived flows: Avg Goodput

Figure 11: Experimental results of the real testbed

server processes. Each process is created and associated with its
unique virtual ports on the virtual switch (i.e., OpenvSwitch).
By doing so, we can generate a large number of flows (in
thousands). This set-up ultimately mimics a data center with a
large number of flows.

Experiment Results In our evaluation, we consider a
scenario in which TCP short-lived flows start at different times
while long-lived flows are taking over the network bandwidth.
Specifically, a burst of short-lived TCP flows is introduced
to compete for bandwidth in a short period of time. We first
generate 7 TCP iperf flows from each sending rack for 30
secs resulting in 42 (2 × 7 × 3 = 42) long-lived flows at
the bottleneck. At the 10th sec, we use traffic generators on
receiving rack to request the webpage (1000 times) from each
of the 7 web servers on 3 racks. We use 10 parallel connections
to request the web pages (7×6×3×10 = 1260 flows in total)
and repeat the ice epoch 5 times (1260× 5 = 6300 flows in
total). This results in high traffic pressure as many flows come
in and out in a short period.

Based on the outcome from the experiments, we make the fol-
lowing observations. Figure 11a suggests that short-lived flows
still benefit from HWatch by achieving comparably shorter
flow completion time on average (up to 100% improvement).
At the same time, Figure 11b demonstrates that the TCP long-
lived flows are not affected by the significant disruption caused
by the intermittently arriving short-lived flows. This indicates
that HWatch is very useful in apportioning the link capacity.
In summary, our experiments confirm that HWatch mitigates
packets drop and delivers packets in less RTT. Thus, HWatch
tackles congestion and allocates the capacity among various
flow types well. The testbed experiments confirm the findings
in the simulation experiments of why HWatch performs well.
Since the probing scheme functions as early warning system,
the advantages of HWatch lay in its speed and effectiveness
of responding to the congestion warnings in timely manner.

VII. RELATED WORK

The current existing work point to TCP timeouts as the
culprit for low throughput and high latency problems in data
centers [38], [39], which often leads to performance degradation
of latency-sensitive applications [40], [41]. There are several
solutions to this problem.

The simple method to resolve the problem of the outstanding
waiting time of RTO is to lower the default MinRTO value [40],
[39]. This approach is proven to be practical and can be

quickly implemented. However, when the right minRTO is
not set, TCP congestion window is frequently backs off to 1
MSS. Consequently, this results in low TCP transmission rate
and hence low bandwidth utilization (or throughput collapse).
Moreover, reliance on modification of static MinRTO is not
scalable in large-scale heterogeneous networks. This approach
also requires modification to the TCP stack of the tenant’s VM,
which makes deployment more difficult due to lack of access
for operators to the guest OS.

Another approach is via controlling the queue build-up at the
switches using feedback mechanisms (E.g., explicit congestion
control or receiver window). This limits how much TCP packets
can be transmitted into network [10], [42], [5], [12], [13], [43],
[44], [45], [46], [47]. By doing so, it improves the performance
of short-lived flows lowering their flow completion time while
at the same time allowing long-lived flows to obtain higher
link utilization. However, similar to solutions discussed above,
this approach also requires modification at the TCP stack,
completely new switch design, or prone to fine-tuning of various
parameters in the operating system or in the applications, which
also make the solution more difficult to deploy.

VIII. CONCLUSION

In this paper, we proposed HWatch to improve the per-
formance of flows in data centers and address the buffer
overflow problem by measuring the congestion level during
connection establishment. Our scheme, in particular, allows
short-lived flows to mitigate early packet drops in a highly
congested network in the data center, which results in a faster
FCT for short-lived flows. We demonstrate the benefits and
effectiveness of HWatch through large scale simulation and
testbed experiments in a data center.

REFERENCES

[1] J Dean and S Ghemawat. MapReduce : Simplified Data Processing on
Large Clusters. Communications of the ACM (CACM), page 107–113,
2008.

[2] Apache. Spark: Lightning-fast cluster computing.
[3] Todd Hoff. Google: Taming The Long Latency Tail - When More

Machines Equals Worse Results.
[4] M. Mattess, R. N. Calheiros, and R. Buyya. Scaling MapReduce

Applications Across Hybrid Clouds to Meet Soft Deadlines. In
Proceedings of IEEE AINA, 2013.

[5] Ahmed M. Abdelmoniem and Brahim Bensaou. Reconciling Mice and
Elephants in Data Center Networks. In Proceedings of IEEE CloudNet,
2015.

[6] Ahmed M. Abdelmoniem and Brahim Bensaou. Incast-Aware Switch-
Assisted TCP Congestion Control for Data Centers. In IEEE Global
Communications Conference (GlobeCom), 2015.

[7] Jiawei Huang, Tian He, Yi Huang, and Jianxin Wang. ARS: Cross-
layer adaptive request scheduling to mitigate TCP incast in data center
networks. In Proceedings of IEEE INFOCOM, 2016.

[8] Ke Wu, Dezun Dong, Cunlu Li, Shan Huang, and Yi Dai. Network
congestion avoidance through packet-chaining reservation. In Proceedings
of ACM ICPP, 2019.

[9] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable RDMA RPC on
reliable connection with efficient resource sharing. In Proceedings of
EuroSys, 2019.

[10] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan.
Data center TCP (DCTCP). In Proceedings of ACM SIGCOMM, 2010.

[11] Ahmed M. Abdelmoniem, Brahim Bensaou, and Amuda James Abu. Hy-
GenICC: Hypervisor-based Generic IP Congestion Control for Virtualized
Data Centers. In Proceedings of IEEE ICC, 2016.

[12] Amuda James Abu, Brahim Bensaou, and Ahmed M. Abdelmoniem.
A Markov Model of CCN Pending Interest Table Occupancy with
Interest Timeout and Retries. In IEEE International Confereence on
Communications (ICC), 2016.

[13] Amuda James Abu, Brahim Bensaou, and Ahmed M. Abdelmoniem.
Leveraging the Pending Interest Table Occupancy for Congestion Control
in CCN. In Proceedings of IEEE LCN, 2016.

[14] C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. Joural
of the ACM, 32(3), July 1985.

[15] Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. Analysis
of DCTCP: stability, convergence, and fairness. In Proceedings of ACM
SIGMETRICS, 2011.

[16] Glenn Judd. Attaining the promise and avoiding the pitfalls of TCP in
the datacenter. In Proceedings of NSDI, 2015.

[17] Ahmed M. Abdelmoniem and Brahim Bensaou. Enforcing Transport-
Agnostic Congestion Control via SDN in Data Centers. In Proceedings
of IEEE LCN, 2017.

[18] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic
characteristics of data centers in the wild. In Proceedings of ACM IMC,
2010.

[19] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Efficient coflow
scheduling with varys. In Proceedings of ACM SIGCOMM, 2014.

[20] Hengky Susanto, Hao Jin, and Kai Chen. Stream: Decentralized
opportunistic inter-coflow scheduling for datacenter networks. In
Proceedings of IEEE ICNP, 2016.

[21] Hengky Susanto, Ahmed M. Abdelmoniem, Honggang Zhang, Benyuan
Liu, and Don Towsley. A near optimal multi-faced job scheduler for
datacenter workloads. In Proceedings of IEEE ICDCS, 2019.

[22] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable,
commodity data center network architecture. In Proceedings of ACM
SIGCOMM, 2008.

[23] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing router
buffers. In Proceedings of ACM SIGCOMM, 2004.

[24] Haitao Wu, Jiabo Ju, Guohan Lu, Chuanxiong Guo, Yongqiang Xiong,
and Yongguang Zhang. Tuning ecn for data center networks. In
Proceedings of ACM CoNEXT, 2012.

[25] Srikanth Kandula, Sudipta Sengupta, Albert G. Greenberg, Parveen Patel,
and Ronnie Chaiken. The nature of data center traffic: measurements &
analysis. In Proceedings of ACM IMC, 2009.

[26] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.
Snoeren. Inside the social network’s (Datacenter) network. In Proceedings
of ACM SIGCOMM, 2015.

[27] NetFilter. NetFilter Packet Filtering Framework for linux.
[28] OpenvSwitch.org. Open Virtual Switch project.
[29] J Postel. RFC 793 - Transmission Control Protocol, 1981.
[30] Pica8. PICOS documentation.
[31] Sally Floyd. Red parameters setting.

[32] C.V. Hollot, V. Misra, D. Towsley, and Wei-Bo Gong. A control theoretic
analysis of RED. In Proceedings of IEEE INFOCOM, 2001.

[33] Mohammad Alizadeh, Abdul Kabbani, Berk Atikoglu, and Balaji
Prabhakar. Stability analysis of QCN. ACM SIGMETRICS Perf. Eval.
Review, 39, 2011.

[34] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley.
Design, implementation and evaluation of congestion control for multipath
TCP. In Proceedings of USENIX NSDI, 2011.

[35] NS2. The network simulator ns-2 project.
[36] Mohammad Alizadeh. Data Center TCP (DCTCP).
[37] netfpga.org. NetFPGA 1G Specifications.

http://netfpga.org/1G specs.html.
[38] Jiao Zhang, Fengyuan Ren, Li Tang, and Chuang Lin. Modeling and

Solving TCP Incast Problem in Data Center Networks. IEEE Transcations
of Parallel and Distributed Systems (TPDS), 26, 2015.

[39] Ahmed M. Abdelmoniem and Brahim Bensaou. Curbing Timeouts
for TCP-Incast in Data Centers via A Cross-Layer Faster Recovery
Mechanism. In Proceedings of IEEE INFOCOM, 2017.

[40] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G.
Andersen, Gregory R. Ganger, Garth A. Gibson, and Brian Mueller.
Safe and effective fine-grained TCP retransmissions for datacenter
communication. In Proceedings of ACM SIGCOMM, 2009.

[41] Ahmed M. Abdelmoniem and Brahim Bensaou. Hysteresis-based Active
Queue Management for TCP Traffic in Data Centers. In Proceedings of
IEEE INFOCOM, 2019.

[42] Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and Yongguang Zhang.
ICTCP: Incast congestion control for TCP in data-center networks.
IEEE/ACM Transactions on Networking, 21, 2013.

[43] Ahmed M. Abdelmoniem, Brahim Bensaou, and Amuda James Abu.
SICC: SDN-based Incast Congestion Control for Data Centers. In
Proceedings of IEEE ICC, 2017.

[44] Ahmed M. Abdelmoniem, Brahim Bensaou, and Amuda James Abu.
Mitigating TCP-Incast Congestion in Data Centers with SDN. Special
issue on Cloud Communications and Networking, Annals of Telecommu-
nications, 2017.

[45] A. S. Sabyasachi, H. M. D. Kabir, A. M. Abdelmoniem, and S. K.
Mondal. A resilient auction framework for deadline-aware jobs in cloud
spot market. In 2017 IEEE 36th Symposium on Reliable Distributed
Systems (SRDS), pages 247–249, 2017.

[46] Ahmed M. Abdelmoniem, Brahim Bensaou, and Victor Barsoum.
IncastGuard: An Efficient TCP-Incast Congestion Effects Mitigation
Scheme for Data Center Network. In Proceedings of IEEE GlobeCom,
2018.

[47] Ahmed M. Abdelmoniem, Yomna M. Abdelmoniem, and Brahim
Bensaou. On Network Systems Design: Pushing the Performance
Envelope via FPGA Prototyping. In IEEE international Conference
on Recent Trends in Computer Engineering (IEEE ITCE), 2019.

