HyGenlCC: Hypervisor-based Generic IP
Congestion Control for Virtualized Data Centers

Ahmed M. Abdelmoniem, Brahim Bensaou, Amuda James Abu
Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
{amas, brahim, ajabu}@cse.ust.hk

Abstract—In today’s modern cloud supported applications, the
traffic relies on both congestion-responsive transport protocols
like TCP and congestion-oblivious transport like UDP including
all their variations. As bandwidth is not totally virtualized in
today’s data centers, the diverse responses of these protocols to
congestion lead to inefficiencies and service disruption to some
applications. In this paper we present HyGenICC, a simple,
distributed and practical congestion control mechanism that puts
congestion control back where it belongs, in the network layer,
albeit, without modifying the network layer behaviour. To this
end IP ECN marking in the switches to indicate congestion,
combined with additional packet processing in the hypervisor
enable HyGenICC to partition bandwidth among competing
virtual machines (VMs) in datacenters effectively. To enable
easy deployment in existing data center, HyGenICC design is
subjected to several constraints such as: i) freedom of changes
to the guest VMs’ congestion control mechanism, and ii) reliance
only on switch capabilities that are already available in today’s
commodity switches. We evaluate HyGenICC by simulation in
ns2 as well as by real testbed experiments via a modification to
the well-known Open vSwitch software.

Keywords—Congestion Control, Data Center Networks, Kernel
Module, Rate Control, Open vSwitch, Virtualization

I. PROBLEM STATEMENT

Resource sharing via virtualization has become a com-
mon practice in today’s public and private datacenters. Most
typically, a tenant is provisioned with virtual machines each
having dedicated CPU cores or virtual CPU, dedicated memory
and storage space, and virtual network interface over the un-
derlying shared physical network interface. In many practical
datacenters, the control plane is very richly provisioned with
many novel methods to make the virtualization easy to manage;
for example, Amazon Web Services adopted a control-plane
concept of “Virtual Private Cloud (VPC)” [1] where a tenant
can easily create and manage its own private virtual network
as an abstraction layer running on top of the shared network
infrastructure of AWS’s public cloud. In contrast, the data
plane has seen little progress in provisioning the network
bandwidth to combat congestion, improve physical network
efficiency, achieve better scalability, and provide true isolation
between competing VMs, allocating each one its share of
bandwidth and throttling careless or subversive ones.

To tackle these issues, cloud providers should deploy a
network abstraction layer that represents a dedicated switch
with guaranteed capacity, connecting various tenants’ VMs
[2]. In such environment, different VMs may reside on any

machine in the datacenter, but each VM should be able to
send traffic at a full line rate specified by the abstraction layer,
regardless of traffic patterns or workload nature generated by
competing VMs.

The following are a few necessary components that can
be integrated together towards this ultimate goal: i) a smart
and scalable VM placement mechanism within the datacenter
network that decouples bandwidth allocation from other re-
sources. To achieve this, topologies with bottlenecks within
the network core (such as uplink over-subscription or a low
bisection bandwidth) should whenever possible be avoided;
ii) a methodology to fully utilize the available high bisection
bandwidth (e.g., a load balancing mechanism and/or multi-path
transport/routing protocols); and iii) a rate control mechanism
to ensure conformance of VM rates to the provided bandwidth,
and to police misbehaving or non-conforming VMs.

A number of promising research works that tackled suc-
cessfully the first two mechanisms are available today [3], [4],
[5]. The works in [3], [5] build scalable network topologies of-
fering a 1:1 over-subscription and a high bisection bandwidth.
These topologies are shown to be easily deployable in practice
and can simplify the VM placement at any end-host with
sufficient bandwidth. The work in [4] targets the second issue,
achieving a high utilization of the available capacity via routing
and transport protocols designed for datacenters. For the third
issue, most proposed solutions [6], [7], [8], [9] focus on
TCP congestion control and its variations to share bandwidth
fairly among flows or to reduce the overall completion time,
nevertheless: i) all such protocols tend to be agnostic to the
nature of VM aggregate traffic demands and cannot evenly
distribute the capacity across competing VMs (for instance
a VM could gain more throughput by opening parallel TCP
connections); ii) the inefficiency is exacerbated by the co-
existence of several TCP flavours in the same network due to
the variations in guest operating systems deployed in the VMs
(e.g., TCP New Reno, compound TCP, Cubic TCP, DCTCP,
and so on); and, iii) finally, the increasing trend of relying
on UDP transport in many emerging cloud applications (e.g.,
[10]), sounds the knell of any solution to the problem that only
relies on TCP.

Unfair competition between TCP and UDP has already
been known to exist for two decades in the Internet. Recent
studies [11] have shown that the problem also exist in data-
center networks with small delays, small buffers and different
topologies from those found in the Internet. We also conducted

a small scale simulation study (not shown here) to ascertain the
existence of such problems and found that TCP NewReno is
always at a disadvantage against aggressive UDP and DCTCP.
With the proliferation of a plethora of transport protocols in
data center it is evident that a new solution to the problems of
congestion is needed, and it must appeals to cloud operators
and cloud tenants alike, as such the following intuitive design
requirements are desirable in such solution: R1) it should be
simple enough to be readily deployable in existing production
datacenters; R2) it should be agnostic to the transport protocol
in use to be able to stand the test of time; R3) it should
not require changes to the tenant VM guest OS, nor assume
any advanced network hardware capability other than those
available in cheap commodity servers and switches; R4) it
should scale well with the volume of traffic.

In this paper we propose a hypervisor-based generic IP
congestion control (HyGenICC) mechanism that fulfils all four
design requirements. In the sequel, we first introduce the idea
behind the design of HyGenICC in Section II. We discuss our
proposed methodology and present the proposed HyGenICC
framework in Section III. We show via ns2 simulations how
HyGenICC achieves its requirements and discuss simulation
results in Section V. In Section VI, we discuss some related
work and finally, conclude the paper in Section VII.

II. INTRODUCTION TO HYGENICC

To enable responsiveness to congestion regardless of the
transport protocol, one needs to return to the fundamentals
and put the burden of congestion control in principle where
it belongs: in the network layer. As such, in principle, such
congestion control mechanism must be transparent to the
transport layer protocol. However, to reconcile the principle
with the practice, design requirements R1-R4 must be fulfilled
and thus HyGenlICC outsources its congestion control building
blocks to the hypervisor.

To meet requirement R1, HyGenICC can be implemented
either as a hypervisor-level shim layer or as an added feature
to any of the current commercial virtual switches’ data-path
module. The job of the added feature to the hypervisor is to
enforce per-VM rate control without VM cooperation nor any
knowledge about its traffic patterns, workloads, or used trans-
port protocol (TCP/UDP)!. To this end, HyGenICC maintains a
rate allocation mechanism at each server to partition the avail-
able uplink bandwidth among VMs locally at the sending and
receiving servers. In each such server, HyGenlCC only needs
to maintain state information per VM which meets design
requirement R4. HyGenICC deploys a simple hypervisor-to-
hypervisor (IP-to-IP) congestion control mechanism that relies
on ECN markings (readily available in commodity switches)
to infer core network congestion. HyGenICC operates at the
IP level and does not interact directly with the VMs, which
meets requirements R1, R2 and R3. In addition, when detect-
ing a highly congested path in the core network towards a
destination (via ECN), HyGenICC performs admission control
by refraining from accepting any further connections to this
destination VM until the congestion subsides. Our design is
highly scalable, responsive, work conserving and since it is IP

'We have implemented and tested HyGenICC as an added feature to the
well-known Open vSwitch (OvS) [12].

based, it enforces the allocated bandwidth even in the presence
of highly dynamic and changing traffic patterns and transport
protocols. The rate allocator resolves the contention among
tens-to-hundreds of co-located VMs at the servers, while the
congestion control mechanism addresses the contention in the
network core and pushes it back to the sources. HyGenICC
also allows administrators to assign per-VM weights which
directly affect the bandwidth reservation for the VMs making
it appealing from cloud providers’ perspective as it enables
easier and more tangible bandwidth pricing and accounting.

III. PROPOSED METHODOLOGY

First we discuss HyGenICC by imagining the datacenter
network as contained within one end-host where the VMs are
connected via a single virtual switch. Then, we extend this de-
sign to operate in a network of end-hosts where the datacenter
fabric is treated as black box that generates congestion signals
whenever congestion is experienced. In a single virtual switch
connecting all VMs, bandwidth contention happens at the
output link to the destination when multiple senders compete
to send through the same output port of the virtual switch. The
virtual switch need to distribute the available physical port’s
capacity among VMs and ensure compliance of the VMs with
the allocated shares. Hence it needs a mechanism that detects
and accounts for active VMs and apply rate limiters on a per-
VM basis to share the bandwidth among them.

TABLE I: Flow attributes and variables tracked in our mechanism

Entry name (VM-to-VM) Description
source IP address of source VM
dest IP address of destination VM
out_packet_count Sent packets count
ipr_packet_count Received packets with “IPR-bit” mark
ecn_packet_count Received packets with ECN mark

Variable name (per VM) Description
rate The share rate or speed of NIC
bucket The capacity of the token bucket in bytes
tokens The number of available tokens to be used for transmission

HyGenlICC deploys a flow table (for congestion control
purpose) to track state information shown in Table I on a VM-
to-VM granularity (i.e., source VM-destination VM pairs). In
addition, per-VM token-bucket state is used to enforce the
VM’s share of bandwidth.

A. VM detection and bandwidth allocation

As soon as a VM’s port becomes active (sending or
receiving traffic), an associated entry is created in the flow
table. Whenever a new VM becomes active on a given NIC,
the NIC’s nominal capacity is redistributed among the token
buckets of active VMs to account for the new one. This is done
by readjusting the rate and bucket size of all active VMs’ token
buckets on that NIC. Any extra traffic sent by the VM in excess
of its share is simply dropped. Our implementation testbed
results have shown that this simple idea is very effective in
achieving the target rates without overloading the server CPU.

B. Congestion Control Mechanism

In practice, congestion may always happen within the
network as shown in Figure 1, if the network is over-subscribed

VM1 HyGenlCC

Hypervisor Sender | NIc1
VM2 OR _—

vSwitch HyGenICC [~
VM3 Receiver NIC2
\\ ————
\
Serverl Server2

Fig. 1: HyGenICC high-level system design

or does not provide full bisection bandwidth. HyGenICC there-
fore relies on readily available features in switches hardware?,
to convey congestion singnals to the sources. To be more
abstract, HyGenICC treats the datacenter network as a black
box in which source servers inject traffic and the black box
generates ECN marks in response to congestion towards the
receivers. ECN marks are a fast proactive mechanism that can
help in quickly detecting any congestion from a shared queue
when buffers exceed a configured queue occupancy along a
packet’s path.

HyGenICC uses the flow table to track, for each source-
destination pair, the number of IP packets received with con-
gestion notification marks, regardless of the type of transport
protocol (TCP, UDP, or otherwise). This information is a
valuable indication of the level of congestion along the path
between the source VM and the destination VM starting at that
particular NIC. Since HyGenICC implements a network-layer
congestion control, any ECN or other marking used to track
congestion is cleared before delivering the datagrams to the
VM. In addition, to force universal ECN marking along the
path, all outgoing packets are marked with the ECN-enabled
bit. HyGenICC typically creates a network layer congestion
control loop between hypervisors and is fully transparent to
the overlying VM transport protocol.

At the receiver side, upon receiving ECN marks, Hy-
GenlCC needs to reflect the information back to the source to
trigger reduction of the sending rate of that particular source
VM. To avoid introducing any additional overhead and hinder
the operation of any on-path middleboxes by introducing a
new protocol, we propose to piggyback the information on
any returning data. For this we identify three types of traffic
flows: TCP, which is by default bidirectional, other non-TCP
bidirectional traffic and finally unidirectional traffic; for the
three categories of traffic, we propose to use the unused
reserved bit in the IP header “IPR-bit” of any reverse packet
to reflect the ECN marking synchronously to the origin. While
this might be sufficient for the first two categories of traffic

2Most current commodity switches used in datacenters are equipped with
QoS mechanisms like Strict Priority (SP), Weighted Fair Queuing (WFQ) and
Weighted Random Early Detection (WRED) in addition to the ability of ECN
marking of IP packets [13].

to carry all marking back to the source, for the third category,
there might be a dramatic imbalance in the forward traffic
and reverse traffic leading to some proportion of forwarded
markings not being reflected back. As a solution HyGenICC
crafts a special small IP packet with header only (20 bytes of
IP and 14 for Ethernet headers) and piggybacks explicitly the
number of remaining ECN marks on the identification field of
this IP packet. The IP protocol field is destined to an unused
number that has meaning only for HyGenICC.

At the sender, to match the current sending rate to the
congestion level in the network, upon receiving “IPR-bit”
marks or the special packet, the source decreases the VM’s
current allocated rate in proportion to the amount of marks
and gradually increases the rate when no congestion bits are
received in a period.

IV. IMPLEMENTATION

As explained above, HyGenICC needs two mechanisms:
rate limiters at the source server and congestion controller
that run from source to destination server. These mechanisms
can either be implemented in software, or hardware or a
combination of both as necessary. For testing purposes we
built HyGenICC in a small-scale test-bed as an add-on feature
in the kernel datapath module of the public open-source
OpenvSwitch implementation. We simplified the design and
concepts of HyGenICC so that the built system is able to
maintain line rate performance at 1-10Gb/s while reacting
quickly to deal with congestion within a datacenter’s short
RTT time scale.

A. HyGenICC sender

HyGenlICC sender processing is described in Algorithm
1. At the senders HyGenICC tracks the rate, the number of
tokens, the depth of the bucket and the fill-rate variables per-
VM per-NIC where the per-VM rate limiters are implemented
as counting token buckets that have a rate R(7,j) each, a
bucket capacity B(i,j) each and number of tokens 7'(i,)
each. In addition, the sender will also handle the received
congestion signals from different destinations on a per-source
basis.

1) Rate Allocation: Initially, the installed on-system NICs
are probed and the values of their nominal data rate R(i),
bucket capacity B(i) and tokens T'(¢) are calculated cor-
respondingly. Thereafter, when packets start flowing from
each source VM, NIC capacities are redistributed and a new
capacity share “Capacity_Share” is calculated and used to
update the entries for each active VM in the rate, tokens and
bucket matrices are marked as currently active on all outgoing
NICs.

After a certain time of inactivity 3_ the bucket entries for a
VM are reset and its allocation is reclaimed and redistributed
among currently active VMs. As shown in Table I, flow-table
entries are established immediately after arrival of the first
packet using source-destination IP address. First, on arrival or
departure of each packet P, its outgoing port j and incoming
port ¢ are detected. The current value of available tokens
T'(i,j) is retrieved and replenished based on the elapsed time

3Inactivity timeout is set to 1 sec in simulations

Algorithm 1 HyGenICC Sender Algorithm

1: procedure PACKET_DEPARTURE(P, 1, j)

2: look up flow entry f in flow table

3 T(i,7) =T(i,7) + R(%,5) X (now — f.senttime)
& T(i,j) = MIN(B(i,3),T(i,)

5: if T'(i,7) > Size(P) then
6.
7
8

f.senttime = getcurrenttime()

: Enable ECN Capable bits (ECT) in IP header
9: else
10: Drop the packet

11: procedure PACKET_ARRIVAL(P, i, j)
12: look up flow entry f in flow table

13: if Packet is congestion feedback message then
14: f.feedback = f.feedback + int(P.data)
15: f.rbdetected = true

16: f.feedbacktime = now

17: Drop the packet

18: else if Packet is “IPR-bit” marked then

19: f-feedback = f.feedback + 1

20: f.rbdetected = true

21: f.feedbacktime = getcurrenttime()

22: Clear the mark and forward to the VM

23: procedure TIMER_TIMEOUT
24: for each flow f in FlowTable do:

25: if f.senttime — now > lsec then

26: f-active = false

27: Reset f entry in Flow Table

28: redistribute NIC capacity among active flows

29: for each Active flow f in FlowTable do:

30: if f.feedbacktime - time() > Congestion_Timeout then
31: f.rbdetected = false

32: if f.rbdetected == false then

33: R(i,j) = R(i,) + MC2pecd

34: else if f.feedback > 0O then

35: R(i,§) = R(3,j) — (f.feedback x MLC-Speed)
36: else

37: R(i,j) = R(i, j) + MCsopecd

38: f-feedback =0

39: R(i,j) = MAX(0, MIN(Capacity_Share, R(3, j)))

since the last transmission. Then, using the new T'(¢,j), the
packet is allowed for transmission if T'(¢,j) > size(pkt), in
this case the packet length is deducted from T'(4, j), otherwise
the packet is dropped.

2) Congestion Reaction: The sender module reacts on
regular intervals to incoming “IPR-bit” and cuts the send-
ing rate in proportion to the amount of marking received.
Hence, sources causing congestion in the network will receive
“IPR-bit” signals and will react by decreasing their sending
rates proportionally until the congestion subsides and con-
gestion signals start disappearing at which time sources start
to gradually increase their rates. The process will increase
the rate conservatively, and if no feedback arrives within
Congestion_Timeout seconds, the rate is increased fast until
it reaches its “Capacity_Share” or an “IPR-bit” is detected
again.

B. HyGenICC receiver

At the receiver, HyGenICC needs to track incoming
congestion ECN marks from the network on a per-source-
destination basis and feed this information back by piggy-

backing it on outgoing packets heading back to corresponding
sources. Hence, the operations of the receiver is quite simple
and does not incur much processing overhead onto incoming
traffic. The receiver processing is described in Algorithm 2.

Algorithm 2 HyGenICC Reciever Algorithm

1: procedure PACKET_ARRIVAL(P, i, j)
2: look up flow entry f in flow table

3: if Packet is ECN marked then

4: f-ecnmarks = f.ecnmarks + 1

5: Clear the mark and forward to the VM

6: if f.feedbacksenttime - time() > feedback_timeout then
7: Create IP feedback message and send to f.source
8: f.feedbacksenttime = getcurrenttime()

9: f-eenmarks =0

10: procedure PACKET_DEPARTURE(P, 1, j)

11: look up flow entry f in flow table

12: if f.ecnmarks > 1 then

13: Set “IPR-bit” flag in IP header

14: f.feedbacksenittime = getcurrenttime()

15: f.eenmarks = f.ecnmarks — 1

Each incoming packet is checked for ECN mark and the
number of packets with and without the mark are traced in
the flow table, Table I, and immediately the ECN mark is
cleared before re-injecting the packet in the normal packet
processing path. For each ECN marked packet, an IPR-bit
mark is reflected in the first available outgoing packet to
that destination (it could be a TCP ACK if the flow is TCP
or a UDP reply data packet) until all the ECN marks are
cleared. However, when ingress and egress traffic are out
of balance on a given flow, non-reflected ECN marks may
start to accumulate at the receiver, to address this issue, we
periodically use an explicit ICMP-like feedback packet to
convey the remaining amount of ECN marks to the source. On
a regular intervals close to an RTT, we scan through the flow
table asynchronously for any flow with remaining ECN marks
and that has not sent feedback for Feedback_Timeout. If any
is found, then an IP packet is created with unused protocol
ID value and the value of ECN marks added as a 2-bytes
payload of this packet addressed to the source of the flow.
This event is infrequent and unlikely to exist but if so, will not
incur much network overhead as the packet size would be 36
bytes (14-bytes Ethernet header + 20-bytes IP header + 2-bytes
payload data). To compress further the explicit feedback, the
2 bytes payload can be piggybacked instead in the IP header
identification field.

V. SIMULATION ANALYSIS

We study the performance of our algorithm via ns2 simu-
lation in network scenarios with a high bandwidth-low delay
(as is the case in data centers). We compare the performance
achieved by a tagged VM using TCP when competing against
other VMs using TCP, DCTCP, and UDP in 1) our system, 2)
a system that does not use such traffic management and relies
on end-to-end congestion control and 3) a system that uses a
central control node to perform static bandwidth allocation. We
have compared two TCP flavours with ECN and without ECN
to show that TCP’s reactive nature to ECN is not sufficient to
achieve the desired allocation especially when competing with
non-responsive flows running UDP.

For HyGenICC, there is a single parameter settings of
timeout interval for updating flow rates which should be larger
than a single RTT, in the simulation we set it to 5 RTTs. In all
simulation experiments, we adjust RED parameters to achieve
marking based on instantaneous queue length at the threshold
of 20% of the buffer size rather than using the weighted
average queue length.

A. Simulation Setup

We use ns2 version 2.35 [14], which we have extended with
a HyGenICC module inserted at the link elements in topology
setup®. In addition, we patched ns2 using the publicly available
DCTCP patch[15]. We compare TCP newReno with SACK-
enabled when competing against TCP, DCTCP and UDP under
the three systems. We considered two cases, one where TCP
is ECN-bit responsive and one when TCP is not. We use in
our simulation experiments speed links of 1 Gb/s for sending
stations, a bottleneck link of 1 Gb/s, low RTT of 100 us and
the default RT'O,,,;, of 200 ms.

We use a rooted tree topology with single bottleneck at
the destination and run the experiments for a period of 15 sec.
The buffer size of the bottleneck link is set to be more than
the bandwidth-delay product in all cases (100 Packets), the IP
data packet size is 1500 bytes.

B. Simulation Results and Discussion

We simulated several scenarios that lead all to the same
results. So for ease of exposition and clarity we consider a toy
scenario with 2 elephant flows, a tagged flow and a competitor.
In the experiments, the tagged flow always uses TCP newReno
and competes with other flows (in the toy scenario only one
other flow) all using the same protocol either TCP newReno,
DCTCP or UDP. The competitor flows start at the beginning
and finish at the 10th second whereas the tagged flow starts
at the 5th second and runs to the end of the simulation.
So typically from O to 5s only the competitors occupy the
bandwidth, from 5s to 10s bandwidth is shared by the two
groups, and from 10s to 15s only the tagged flow uses the
bandwidth. This experiment is designed to demonstrate the
work conservation-ability, the efficiency, and the convergence
speed of HyGenICC compared to other alternatives.

Figure 2 shows the goodput of the tagged TCP flow
with respect to each competitor and the aggregate goodput
observed at the destination in the 2 flows scenario. As shown
in Figure 2a, without any rate limits, TCP struggles to grab
any bandwidth when competing with DCTCP and UDP and
its throughput is not stable when competing with TCP without
ECN. Figure 2b suggests that ECN can partially solve the
problem by allowing TCP flow to be responsive to conges-
tion events at the network, however the achieved throughput
reaches the allocated share only when the competitor uses the
same TCP protocol. This is attributed to the fact that DCTCP
does not react as conservatively as TCP to ECN marks as it
does not cut its window by half like TCP does. Figures 2c
and 2d show that a centralized node assigning per VM static
rates can achieve perfect rate allocation but is not efficient
as it does not achieve work-conservation. Figures 2e and 2f
show that HyGenICC’s dynamic rate limiters that respond to

4Simulation code is available upon request from the authors

Goodput (Mb/s)

(a) No ratelimit without ECN

Goodput (Mb/s)

(¢) Static ratelimit without ECN

Goodput (Mb/s)

1000

800 |

600 |-

400 |

200 |

0

2 4 6 8 10
Time (s)

12

14

1000 |-

800 |-

600 |-

400 |

200 |

0

2 4 6 8 10
Time (s)

12

14

1000

800 |

600 |-

400 |

Goodput (Mb/s)

Goodput (Mb/s)

(d) Static ratelimit with ECN

Goodput (Mb/s)

1000

800

600 |

400

200 |

0

— TCP
DCTCP i

UDP
| Total

0

(b)

2 4 6

®
3
s
z

Time (s)

No ratelimit with ECN

1000 |~

800 |-

600 |-

400 |

200 |

0

TCP
DCTCP i
- UDP
| Towl

0

2 4 6 8 10 12 14
Time (s)

1000

800 |

600 |-

400 |

200 | 200 |

0 L L L L L L 0

Time (s)

(e) HyGenICC ratelimit without
ECN

Time (s)
(f) HyGenICC ratelimit with
ECN

Fig. 2: Goodput of the tagged TCP flow and aggregate (total) good-
put of all senders as measured by the destination.

congestion signals achieve both target rate allocation and work
conservation regardless of the competing transport protocol.
Hence, HyGenICC is able to converge to the current network-
wide target-share for the TCP flow in all cases and keeps the
network links fully utilized all the time.

1000 1 nm—
800 f- - 800 | .

600 |- -

Goodput (Mbis)

400 =

Goodput (Mb/s)

200 =

0 L

Time (s)

(a) 4 senders scenario

Time (s)

(b) 8 senders scenario

Fig. 3: Goodput of the tagged TCP flow and aggregate (total) good-
put as measured by the destination for 4 and 8 senders
scenarios.

Figure 3 shows how HyGenICC reacts to the increasing
number of senders by repeating same scenario but with 4
and 8 senders. For the new arriving TCP flow starting at
the slow start, it can grab its current share quickly causing
congestion in the network. The RB markings coming to the
sources will help them adjust their rates up and down until they
reach the equilibrium point where each sources is getting their
share of 1Gb/4 = 250Mb and 1Gb/8 = 125Mb respectively.
HyGenICC’s convergence time of (< 1 sec) may be a concern

but it will not greatly affect the performance of the long-
lived elephants and will benefit short-lived mice flows by
reducing drops at the end-host rate limiters, which aligns
with the testbed results available in technical report [16]°. To
summarize this simulation study, HyGenICC seems to be able
to smooth oscillations and reach a high link utilization and
efficient rate allocation among competing flows.

VI. RELATED WORK

HyGenICC can be comparable or complementary to a
number of works on cloud network resource allocation that
have been proposed recently. Seawall [17] is a system proposed
for sharing network bandwidth, it provides per-VM max-
min weighted fair share using explicit feedback end-to-end
congestion notification based on losses for rate adaptation.
Seawall requires modifications to network stack which incurs a
large overhead and may interfere with middleboxes operations.
SecondNet [18] is designed to divide network among tenants
and enforce rate limits, but is limited to providing static
bandwidth reservation between pairs of VMs. Oktopus [2]
argues for predictability by enforcing a static hose model using
rate limiters. It computes rates using a pseudo-centralized
mechanism, where VMs communicate their pairwise band-
width consumption to a tenant-specific centralized coordinator.
This control plane overhead limits reaction times to more
than 2 seconds which is inadequate for the fast changing and
dynamic traffic nature in datacenters. FairCloud [19] designs
better policies for sharing bandwidth and explored fundamental
trade-offs between network utilization, minimum guarantees
and payment proportionality, for a number of sharing policies.
EyeQ [20] provides per-VM max-min weighted fair shares in
the context of a full bisection bandwidth datacenter topology
where congestion is limited to the first and the last hops.
By simplifying rate limiters and coupling congestion control
to make them dynamic entities rather than static, HyGenICC
can achieve similar objectives as these proposals in an easy
to deploy manner with minimal CPU and network overhead.
HyGenlICC is designed to operate with commodity infras-
tructure and traditional protocols used by current production
datacenter/cloud, to be a readily deployable solution. Finally,
HyGenlICC leverages the popularity of Open vSwitch [21]
usage by cloud management frameworks like openstack to
implement its mechanism with minor modifications that do
not require any new protocols, software and hardware.

VII. CONCLUSION AND FUTURE WORK

In this paper, we set to design and build HyGenICC a sys-
tem that can fit easily within current production cloud setups
to achieve better bandwidth isolation and improved application
performance. HyGenlICC is a hypervisor (vswitch) level frame-
work to enforce efficient and guaranteed network bandwidth
allocation among competing VMs. Our intuitive analysis and
small-scale testbed experiments show that simple mechanisms
like rate limiting token buckets allied to ingress-egress con-
gestion control protocol can lead to a simple, scalable and

SWe also implemented a prototype of HyGenICC in a real testbed as an
added feature of the popular Open vSwitch (OvS) [12]. The results from our
small testbed conform to those observed in the simulation study. However,
due to space constraints we do not show here any results from the testbed
experiments. Interested readers may refer to the technical report for the
implementation and evaluation using OvS [16].

readily deployable system design for cloud network resource
isolation. HyGenICC is built with three main objectives in
mind, low overhead, commodity hardware, and no changes to
network hardware or VMs protocol stack. This constitutes a
great incentive for deployment in today’s production datacenter
networks. HyGenICC requires minimal human intervention
and can flexibly and efficiently divide network bandwidth
across active VMs by giving each VM endpoint a predictable
minimum bandwidth and hence bounded latency. Regardless
of the transport protocol used by the applications residing
in the VMs and even with the existence of misbehaving or
bandwidth-hungry traffic, HyGenICC can achieve its design
goals. Further testing HyGenICC in a larger scale data center
is currently part of our ongoing work.

REFERENCES

[1] Amazon, “AWS Virtual
http://aws.amazon.com/vpc/.

Private Cloud (VPC).”

[2] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” ACM SIGCOMM Computer Commu-
nication Review, vol. 41, no. 4, p. 242, 2011.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, SIGCOMM ’08, (New York,
NY, USA), pp. 63-74, ACM, 2008.

[4] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” in Proceedings of the ACM SIGCOMM 2011 confer-
ence on SIGCOMM - SIGCOMM 11, vol. 41, (New York, New York,
USA), p. 266, ACM Press, Aug. 2011.

[5S] B. A. Greenberg, J. R. Hamilton, S. Kandula, C. Kim, P. Lahiri,
A. Maltz, P. Patel, S. Sengupta, A. Greenberg, N. Jain, and D. A. Maltz,
“VL2: a scalable and flexible data center network,” in Proceedings of
the ACM SIGCOMM 2009 conference on Data communication, vol. 09,
pp- 51-62, 2009.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),”
ACM SIGCOMM Computer Communication Review, vol. 40, p. 63,
2010.

[71 H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion
control for TCP in data-center networks,” IEEE/ACM Transactions on
Networking, vol. 21, pp. 345-358, 2013.

[8] A.M. Abdelmoniem and B. Bensaou, “Reconciling mice and elephants
in data center networks,” in 2015 IEEE 4th International Conference
on Cloud Networking (CloudNet) (CLOUDNET’15), (Niagara Falls,
Canada), pp. 7-12, Oct. 2015.

[9] A. M. Abdelmoniem and B. Bensaou, “Incast-Aware Switch-Assisted
TCP congestion control for data centers,” in 2015 IEEE Global Com-
munications Conference: Next Generation Networking Symposium (GC’
15 - Next Generation Networking), (San Diego, USA), Dec. 2015.

[10] R. Nishtala, H. Fugal, and S. Grimm, “Scaling memcache at facebook,”
NDSI’13 Proceedings of the 10th USENIX conference on Networked
Systems Design and Implementation, pp. 385-398, 2013.

[11] S. M. Irteza, A. Ahmed, S. Farrukh, B. N. Memon, and I. A. Qazi, “On
the coexistence of transport protocols in data centers,” in 2074 IEEE
International Conference on Communications (ICC), pp. 3203-3208,
IEEE, June 2014.

[12] OpenvSwitch, “Open Virtual Switch project.” http://openvswitch.org/.

[13] EdgeCore, “EdgeCore AS4600-54T Datacenter ToR
http://www.edge-core.com/ProdDtl.asp?sno=424& AS4600-54T.

switch.”

[14] NS2, “The network simulator ns-2 project.”
http://www.isi.edu/nsnam/ns.
[15] M. Alizadeh, “Data Center TCP (DCTCP),” 2012.

http://simula.stanford.edu/%7Ealizade/Site/DCTCP.html.

[16] A. M. Abdelmoniem and B. Bensaou, “Generic hypervisor-based
congestion control for data centers: Implementation and evaluation,”
Tech. Rep. HKUST-CS15-03, Department of Computer Science and

[17]

(18]

[19]

Engineering, Hong Kong University of Science and Technology, Clear
Water Bay, Hong Kong, October 2015.

A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing
the data center network,” in Proceedings of the 8th USENIX conference
on Networked systems design and implementation, p. 23, 2011.

C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: A data center network virtualization architecture
with bandwidth guarantees,” in Proceedings of the 6th International
COnference on emerging Networking EXperiments and Technologies,
Co-NEXT 10, (New York, NY, USA), pp. 15:1-15:12, ACM, 2010.

L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,

[20]

[21]

and I. Stoica, “FairCloud: Sharing the Network in Cloud Computing,”
Computer Communication Review, vol. 42, pp. 187-198, 2012.

V. Jeyakumar, M. Alizadeh, D. Maziéres, B. Prabhakar, C. Kim, and
A. Greenberg, “Eyeq: Practical network performance isolation at the
edge,” in Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation, nsdi’13, (Berkeley, CA, USA),
pp- 297-312, USENIX Association, 2013.

OpenStack, setting in OpenStack

framework.” http://docs.openstack.org/admin-guide-
cloud/content/under_the_hood_openvswitch.html.

“OpenvSwitch

