End-host Timely TCP Loss Recovery via ACK
Retransmission in Data Centres.

Ahmed M. Abdelmoniem and Brahim Bensaou
Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
{amas, brahim} @cse.ust.hk

June 28, 2017

In this report, we have studies various switch-based schemes to solve certain
issues that TCP applications face in public cloud networks. In this report, we
study the problem of Retransmission Timeout (RTO) inadequacy for TCP in data
centers. To this end, we empirically, in a small data center, analyze the effects
of packet losses on various types of flows. Then, we highlight the non-uniform
effects of packet losses on the Flow Completion Time (FCT) of short-lived flows.
In particular, we show that packet losses which occur at the tail-end of short-lived
flows and/or bursty losses that span a large fraction of a small congestion window
are frequent in data center networks. These losses in most cases result in slow loss
recovery after waiting for a long RTO. The negative effect of frequent RTOs on the
FCT is dramatic, yet recovery via RTO is merely a symptom of the pathological
design of TCP’s minimum RTO that was set by default to hundreds of milliseconds
to meet the Internet scale. Hence, we propose the so-called Timely Retransmitted
ACKs (T-RACKSs which is pronounced T-Rex), a recovery mechanism for data
centers, implemented as a shim layer between the VMs layer and the hypervisor.
T-RACKs aims to bridge the gap between TCP RTO and the actual Round-Trip
Time (RTT) as experienced in the data center. Simulation and experimental results
show considerable improvements in the FCT distribution and missed deadlines
without any need to modify the TCP implementation or configurations in the guest
VMs. T-RACKSs requires no special hardware features which makes it appealing

for immediate deployment in production data centers.

For the purposes of reproducibility and openness, we make the code and
scripts of our implementations, simulations, and experiments available online at
http://github.com/ahmedcs/T-RACKs.

1 Introduction

In Part ?? of this thesis, we have shown that the quality of the application results
is correlated not only with the average latency but also with the latency of the tail-
end result (e.g., the 90""-up percentile of the FCT) which can be from 2 to 4 orders
of magnitude worse than the median or even the average. In a recent study [20],
it was shown that CPU resources are often the bottleneck in private data centers
and hence they adopt solutions that invoke task admission control and scheduling
techniques. On the other hand, public data centers are equipped with abundant
computing resources and usually the network is the bottleneck. They also tend
to apply high over-subscription ratios in the network, greatly impacting on the
network latency [29]. Hence, most Internet-scale applications deployed on public
clouds (e.g., Microsoft Azure or Amazon EC2) suffer from latency issues.

In data centers, the transfer of data involves various delays that contribute
to the latency. These delays include processing, transmission, propagation and
queueing delays and in certain cases the delay of waiting for RTO. Processing,
transmission and propagation delays tend to be small and they are either constant
or variable with very small variations. Hence, they are almost negligible and are
not blamed for increased network latencies. Therefore, the increased latency is
typically a result of the inflated in-network queueing delays or the long waiting
for RTO. Queueing delays typically increase when the network is congested and
the buffers start to fill up. The waiting in the queue can add a significant amount
of delay to the flow completion time. However, thanks to the fast link speeds
employed in data centers, these delays range between 100s microseconds to a
few milliseconds. On the other hand, waiting for the RTO can greatly impact on
the performance of any short-lived flow and the FCT is bloated up to values that
render the transfer of small flow useless. This is because RTOs are pre-fixed with
lower bound values that fit the wide-area Internet communications which are in
orders of 100s of milliseconds. It is evident that waiting for 100s of milliseconds
for intra-datacenter communications is a devastating situation for small flows if
they experience losses not recoverable by fast retransmit.

In Part ??, we have explored techniques to control the queue occupancy at

http://github.com/ahmedcs/T-RACKs

low levels, techniques to alleviate complex events such as incast and techniques
to stretch out the short TCP cycles in data centers. Even though, these techniques
were shown to be effective, they possess a serious drawbacks which is that they are
switch-based systems and they may see slow adoption in production data centers.
In addition and more importantly, they have not addressed the cases when flows
experience Non-Recoverable Losses (NRL) (i.e., the flow have to wait for long
RTO). In this report, we try to fill this gap and present a hypervisor-based system
to handle NRL in a timely manner.

In the remainder of this report, we first give the background and discuss in
Section 2| how waiting for RTO can dramatically affect the performance of time-
sensitive TCP flows. We support our claims with results from an empirical study
in a small testbed. Our proposed methodology and the T-RACKSs system are pre-
sented and discussed in Section[3] In Section[d] we discuss our simulation results
in detail. Then, in Section E], we discuss the implementation details of T-RACKSs
and show experimental results from its deployment in the testbed. We discuss im-
portant work related to the report in Section [6] Finally, we conclude the report in
Section[7l

2 Background and Problem Statement

Major application providers (e.g., Microsoft, Facebook and Google) use dedicated
well-structured data centers to deploy their time-sensitive applications. Neverthe-
less, due to the predominance of many-to-one (or many-to-many) communication
patterns in data centers, TCP-incast network congestion is inevitable and still re-
sults in many RTO events [28, 18, |2, 135, [17]. In addition, virtualization and the
frequent context switching by the hypervisors to arbitrate resources among com-
peting VMs contribute greatly to the inaccurate estimation of in-network delays
by TCP in the guest VM. This bloats the perceived RTT from the microsecond
time scale to the millisecond scale. In the following, we discuss more about TCP
retransmission timeout [33] and the effect of virtualization on TCP’s RTT mea-
surements [|34]].

2.1 TCP Retransmission Timeout

TCP is a reliable transport protocol and to ensure reliability it employs an end-to-
end acknowledgement system. Whenever the data is sent by the sender, the re-
ceiver must acknowledge the receipt of the data if the data packet has no errors. In

an ideal case, data and acknowledgment packets are successfully delivered, how-
ever there are unfortunate cases where the packets get corrupted/lost. To fulfill the
reliability requirement, the TCP sender sets a timer when the data is transmitted.
If the acknowledgement of the data is not received before timeout expiry, then
TCP assumes the segment is lost and retransmits the lost segment.

A critical part of any TCP implementation is the setting of RTO and the em-
ployed retransmission strategy. Hence, the important questions to be answered
are: Q1) how is the RTO period determined?; ;) how are consecutive timeouts
handled?; Q3) and which packets are retransmitted? The answers to these ques-
tions are as follows:

1. We find that the typical TCP Request For Comments (RFC) and implemen-
tations measure the RTT of TCP segments. Then, TCP employs a smoothed
average of these measurements to estimate a reasonable RTO value for each
segment to be retransmitted. However, most implementation also put a
lower bound on the RTO value (i.e., Minimum RTQO) which are in orders
of 100s milliseconds (1 second in RFC [27]). This minimum RTO is typi-
cally hard-coded (e.g., Linux Kernel) and is set to match delays seen on the
Internet.

2. To handle the case of the consecutive timeouts for the same data packet,
TCP adopts an exponential backoff strategy. Exponential backoff gradually
doubles the RTO value for each retransmission of the retransmitted data
packet. For this purpose, TCP upper bounds the RTO (i.e., Maximum RTO)
which are in orders of seconds. This maximum RTO is also hard-coded
(e.g., 64 seconds in the Linux Kernel).

3. When TCP retransmits packets, it either adopts a Go-Back-n or selective
repeat strategy. Typical implementations follow the Go-Back-n strategy in
which all packets after and including the lost one are retransmitted. Selec-
tive repeat transmits only the lost packet; however this function requires to
be negotiated by the end-points and a special TCP option are needed in the
TCP header.

In Section[2] we will perform an empirical study on packet loss measurements
from a small data center. Our findings show that the RTO is a frequent event in
typical data center workloads. In addition, the performance of small and large
flows are equally impacted by the extra waiting time for RTO.

2.2 RTT Inflation by Virtualization

Most CSPs use the virtualization mechanism to share the resources among users
in a flexible and cost-effective manner. For instance, Amazon EC2 uses Xen virtu-
alization [[19] to run multiple VMs on the same physical machine. Typically, VMs
share CPU, I/O devices (e.g., disk and NIC) with other VMs residing on the same
machine. It is not surprising that the task of virtualizing the physical resources
has a great impact on the performance of computation and communication in vir-
tualized cloud environments. A few measurement studies have been conducted to
observe the impact of virtualization technologies on the Quality of Service (QoS)
of cloud applications.

The work in [34] was one of the first studies to report their findings. They
found that VMs of small type typically get only a 40-50% share of the proces-
sor and they see very unstable TCP/UDP throughput. More surprisingly, the
TCP/UDP throughput seen by many applications can rapidly fluctuate between
0-1 Gbps within 10s millisecond time granularity. They also observe that even
though DCN is not heavily congested, abnormally large packet delay variations
among different instance variants are reported. Moreover, the delay fluctuations
can be up to 100x times the propagation delay between two end hosts. These large
delay variations are a result of the long queuing delay the packets experience at
the interface between VM driver domain and the hypervisor. The queue typically
builds up when the packets from guest VM accumulate and wait for the hypervisor
to move them to the host OS side. This queueing and data movement add up to
the software overhead on the end systems and consequently on the overall delay
as well.

The performance of applications is not only affected by the delays introduced
during data movement from VM space to host OS but also the delays induced
by the hypervisor’s scheduling which can greatly affect the I/O performance of
the VMs. This is the case because these scheduling delays increase the VM’s
interrupt processing time. To support this fact, we have collected various network
measurements including RTT and interrupt-processing overhead (i.e., delay) from
our experimental cluster running different types of Hypervisors (e.g., KVM/Qemu
and Xen). We perform an empirical study on a small cluster testbed as well as
on measurements from Amazon EC2. Our findings is that the context switching
among guest VMs adds at least 30ms of delay in a Xen virtualized environment.
The performance of small and large flows is equally impacted by the extra delay.

2.3 Empirical Analysis of RTO

To be able to study when and how the timeout happens in high-bandwidth low-
delay environments, we have built a customized traffic generator written in C and
python. The generator reproduces traffic similar to those reported from commer-
cial and private data centers. The traffic is generated via socket based client/server
applications running on the VMs (1 client and 1 server per VM) in the cluster. The
client generates flow requests with flow sizes drawn from distributions extracted
from [18, 9, 2, |6]. Similarly, the request inter-arrival times are generated from
the supplied distribution files. The server is a simple TCP-listener that accepts re-
quests and sends random data (of size that match the client requested size) to the
client. In order to coordinate the experiments, we have used the remote XMLRPC
server on each machine to start up clients and servers with the supplied experi-
mental configurations.

The traffic generator was augmented with scripts that collect the uplink and
downlink utilization of all active NICs on the end-host. To measure the sys-
tem load and overhead introduced by our probing module as well as T-RACKs,
we sampled the system load information from sysstat program on all participat-
ing end-hosts. Our cluster uses non-blocking Top-of-Rack (ToR) switches and a
NetFPGA-card on a PC as our core switch. The traffic generator framework is
instrumented to collect queue occupancy and packet drops for each of the 4-ports
on the NetFPGA card by sampling the corresponding statistic registers at regular
intervals.

To observe the events at the TCP socket level, we have invoked the Linux
kernel built-in probing features (jprobe [16]) and have built a kernel module to
trace TCP socket events shown in Table[I] The module installs a jprobe object per
traced TCP function to call our designated probe function. Probe function To
log the events of interest, we leverage the /proc file system. TCP stack Probing
potentially adds extra overhead to the data-path processing pipeline. Hence, to
lower such overhead, we create one PROC file for arrival events and another one
for departure events. The module dumps for each event various TCP socket-level
state variables. Table [2] shows a number of these variables, while other variables
are omitted for brevity. These variables are used later in our analysis of TCP
dynamicﬂ

733

I"Typically, probe functions is named with “j” prefix added to the name of its Linux counterpart.
For example, the probe function of tcp_set_state would be jtcp_set_state

2In some case, we used additional information from packet-level traces collected at the link-
layer using TCPdump [32].

Traced Linux Kernel Function | Description

Event

Connec- tcp_set_state tcp_set_state is invoked upon change of

tion the current TCP socket state. The

establish- transitions follows the TCP state

ment and machine For instance, sockets are

teardown opened when state changes from
TCP_SYN_SENT to
TCP_ESTABLISHED. Similarly,
sockets are closed if state changes from
TCP_LAST_ACK or TCP_FIN_SENT to
TCP_CLOSE

ACK & tcp_v4_do_rcv Upon arrival of TCP segments wether

dupACK Data or ACK, tcp_v4_do_rcv is invoked

& to process the segment. dupACKs are

FRACK identifed if the seq# is equal to
tp-;,snd_wnd. FRACKSs are
differentiated from the normal ACKs
(for tracing purpose) by using a
different TTL value for when FRACKSs
are transmitted.

Segment tcp-v4_send_check Before departure of TCP segments,

depar- function tcp_v4_send_check performs

tures certain checks on the segment. We
probe this function to detect timeout
events based on the transmitted seq#.

Fast Re- tcp_retransmit_skb Whenever segments are transmitted by

transmit TCP, function tcp_retransmit_skb is

& RTO called. The type of retransmission can
be inferred from the sockets CA_STATE
variable. If the value is TCP_CA_LOSS
then this is RTO event, otherwise it is
fast retransmit event.

Table 1: Traced events by our custom TCP socket-level Probe module. Each event is
probed within a certain function of Linux TCP/IP stack.

Socket/Pkt Variable | Description
Event Timestamp | The current timestamp of the event (in nano-second
granularity).
Event Type XMIT, RXMIT, FEXMIT, OPEN, CLOSE, RCV,
RCVACK, dupACK or FRACK.
4-tuples ID End-points IP and port numbers for flow ID.
SEQ No For received and/or (re)transmitted segments.
ACK No For ACKs and/or dupACKs and/or FRACKSs.
Cwnd The current value of TCP congestion window
Rwnd The recent value of TCP advertised window
Swnd The current value of TCP sending window
Flight pkts The number of packets currently on flight
RTT Smoothed RTT and variance of measured RTT

Table 2: TCP Socket level state variables traced by our module.

R —

L

0.8

ra

0.6

CDF

0.4

0.2

kX

ol v
1 10 100 1000

)M
] 08 |]
] 06]
w
a
| 0
04 B
Websearch —— |
PRV1 =~ 02 B
EDUL 1 Websearch —f—
Datamining PRV1 —)—
L EDUL
10000 100000 le+06 0
1 10 100 1000

Request Size (Kbytes)

(a) CDF distribution of requested flow

sizes

Figure 1:

Inter-arrival times (ms-logscle)
(b) CDF distribution of inter-arrival times

: Flow size and inter-arrival time distributions

The Traffic Generator (TG) can be configured to produce one of four different
realistic workloads including websearch [2]], datamining [9], educational [7] and
private cluster [7]]. Fig[Ia]shows per server-application response size distribution

and Fig [1b|shows the inter-arrival times distribution of the aforementioned work-
loads. Notably, for a websearch workload, the average inter-arrival time is 117 ms
and the average response size is 1.44 MBytes. For datamining workloads since
the inter-arrival times distribution is not available we have used a Poisson process
with mean inter-arrival of 810ms and the average of the response size distribution
is 12.66 MBytes. Our testbed cluster uses 28 server-grade end-hosts organized
into 4 racks. The racks are connected via 5 switches organized into 4 ToR and
1 Core (NetFPGA) switch. Even though, our cluster does not match the scale of
commercial-sized clusters, we believe using realistic workloads allows us to draw
meaningful qualitative conclusions from our results and findings that may benefit
the design of larger-clusters.

To find why packet losses do not really hurt much elephant flows yet dramati-
cally degrade the performance of short-lived flows, we used our socket-level probe
module to collect relevant information shown in Table [2] We used the traffic gen-
erator to replicate the websearch workload of thousands of flows. We display the
size of each retransmission (i.e., the seq# of the first and last segment in single re-
covery) with respect to CWND and the position of the first retransmitted segment
relative to CWND when it was transmitted (i.e., before loss is detected).

Here we show our results and try to pin-point the actual cause of increased
latency in data centers. Fig[2c|suggests that fast retransmission is well distributed
over the range of packets with positive skewness towards packets at the end of
the window. However, Fig [2b] clearly shows that this is not the case for timeout
retransmissions where the distribution is heavily tailed again with positive skew-
ness towards the few packets at the end of the window. Also, we can see that there
are very few RTOs far away from the tail, these reflect sequences of lost packets
within the same congestion window. Fig [2d| shows the distribution of the posi-
tion of fast retransmitted packets relative to the size of the congestion windowﬂ
This points out that losses at the tail of the window occur with higher frequency,
however in the case of Fast Retransmit and Recovery (FRR), the Cwndhas to be
relatively large to allow for recovery via FRR. Similarly, Fig [2a) shows the distri-
bution of the position of packets retransmitted through RTO which clearly shows
similar trend with higher frequency at the tail, however in this case, Cwndis rel-
atively small and hence, contains less in flight packets to allow for FR recovery.
To put this into context, Fig [3a] shows that the segments that have recovered via

3The position here points to the first retransmitted packet if a range of consecutive packets were
lost. Each figure shows the aggregate of all servers in the cluster

Probability Distribution Function (PDF)

Probability Distribution Function (PDF)

0.6

03 samples=21835
mean=15.76
04 STD=20.48
’ median=9.09

0.3

0.2

0.1

0 10

20 30 40 50 60 70

loss size normalized to CWND

(a) FR size rel. CWND size

80 90 100

0.5
0.4 1 samples=21835
mean=73.50
STD=19.33
median=80.00
0.3 -
0.2
0.1
0

0 10

20

30 40 50 60 70
loss position normalized to CWND

(¢) FR pos rel. CWND

80 90 100

CWND

Probability Distribution Function (PDF)

Probability Distribution Function (PDF)

0.6

0.5

0.4 -

0.3 4

0.2

0.1

0

0

0.5

samples=7149
mean=31.56
STD=32.25
median=16.67

10 20 30 40 50 60 70

loss size normalized to CWND

(b) RTO size rel. CWND size

80 90 100

0.4 -

samples=7149
mean=75.99
STD=17.92

median=81.40

10

20 30 40 50 60 70

loss position normalized to CWND

(d) RTO pos rel. CWND

80 90 100

Figure 2: (a-b) shows retransmission size while (c-d) position of the segment relative to

RTO have Cwndvalues that are smaller than the ones that have recovered via FRR.

In Section [6] we present a tail-loss recovery mechanism namely TLP [23]]

which was proposed as an RFC and was adopted in Linux Kernel. Hence, we
also quantify the ineffectiveness of TLP mechanism in recovering tail losses.
Fig 3b] shows that the TLP mechanism is not effective and due to its overhead it
may even increase the FCT of short flows.

To further understand how RTO would degrade the performance of TCP flows,

10

140 | 1
081 120 1
100 J

80 - 1

CDF

0.4 60 - 4

40 J

02 - 20 - 4

Average FCT with Errorbars (ms)

Fast Retransmit —— 0 #
RTO Retransmit ——
0 | | | | h/é’ % 14/@ 6 [oN - [oN s,
0 5 10 15 20 25 30 o e
CWND size Scheme
(a) CDF of CWND size (b) FCT of small flows

Figure 3: (a) shows the CDF of CWND at the time of the transmission of the lost packet.
(b) TLP and NO-TLP FCT for websearch and datamining workloads

assume a TCP flow is established, and its current congestion window has the value
of w. TCP will start sending w full-sized segments (numbered 1,2,..,w). Assuming
Drop-Tail AQM in place at the bottleneck link, and that a packet w is lost and
subsequently L packets are lost. Then, TCP surely experiences timeout if the
following inequality holds:

w—(x+L) <9, (1

where ¢ is the minimum number of TCP DUPACKSs necessary to trigger the
FRR mechanism. Equation(TI]) simply states that if a packet loss is followed by
enough losses (not necessarily consecutive) leading to the depletion of the flight-
size, there is a high chance of not having sufficient dupACKs to recover via FRR.
In data centers the pipeline size is small: typically with 100us RTT, a link of 1
(10) Gbps can accommodate 8.3 (83) packets, respectively. In conjunction with
shallow buffered switches, the nominal TCP fair share during TCP-incast barely
exceeds one packet per flow, making the condition described by Equation[I] very
frequent. This clearly highlights how TCP’s performance can be degraded when
operating in small windows regimes in a small buffer with high-bandwidth low-
delay switching environments like data centers. The effect on the flow completion
time is more severe for short, time-sensitive flows that normally last only a few
RTTs but that are compelled to wait for 2 to 4 orders of magnitude extra time due
to the minRTO rule.

11

2.4 Empirical Analysis of Virtualization Delays

In this study, we install Xen hypervisor on a small scale testbed environment and
collect measurements to quantize the effect of virtualization on applications. Xen
hypervisor runs a driver domain (Dom0O) which performs 1/0 forwarding for all
guest domains and normally runs on dedicated CPU cores for guaranteed effi-
ciency. I/0 virtualization models adopted by Xen are: i) Full Virtualization (FV):
which allows for an unmodified guest OS to run on processors with virtualiza-
tion support (i.e, Intel VT and AMD SVM) while the Xen hypervisor leverages
QEMU to emulate I/O devices for VMs; and ii) Para-Virtualization (PV): which
is a modified guest OS that uses a front-back-driver model for the execution of
privileged instructions.

The testbed consists of 7 servers each associated with physical 4-port ded-
icated 1GB Server-grade Network Interface Card (NIC) and running on 7 high
performance Dell PowerEdge R320 machines. The machines are equipped with
Intel Xenon E5-2430 6-cores CPU, 32 GBytes of RAM and Intel 1350 server-
grade 1 Gb/s quad-port NIC. The servers are organized into 4 racks (each rack
is a subnet) and connected via 4 non-blocking ToR switches with the NetFPGA
switch serving as the core switch. The topology forms a leaf-spine tree where
each 7 out of the 28 ports belonging to the same subnet are connected to one of
the non-blocking ToR switches through 1 Gb/s links. The servers are installed
with Ubuntu Server 14.04 LTS upgraded to kernel version 3.18 which has by de-
fault the implementation of Cubic, New Reno and DCTCP [1]] congestion control
mechanisms.

In the following experiments, we use ICMP-based ping program which can
report consecutively the end-to-end RTT values seen by the VM. We collected
the measurements for 1000 consecutive ICMP ECHO request-reply with various
inter-request time interval of 100, 10, 1 ms. First, we show the RTT of the physi-
cal network between 2 servers which are 4 hops away in our leaf-spine topology.
Figure {a] shows that an average RTT of 0.191,0.188,0.172 ms (which was con-
sistent for other servers) for intervals of 100, 10, 1 ms, respectively. Then the RTT
of VM-to-VM (each VM allocated 1 VCPU pinned to 1 CPU core) is shown in
Figure [4b] where the average RTT jumps to 0.757,0.733,0.41 ms for intervals of
100,10, 1 ms, respectively. The overhead added by the extra work of hypervisor
moving data between the driver domain (Dom0) and the guest domain leads to
increase in the RTT of ~ 0.2 —0.55 ms.

Now we co-allocate the physical CPU core used by the VCPU of the VMs
with another CPU-bound VM (CVM)), this can be achieved by means of setting the

12

Ping Frequency (Inter-Arrival)

\
[100ms

10ms X ims x|
1.2 — T T T T T T T T
1 - .

0.8 | B
©
E
= os) .
'_
o

0.4 | B

X X *
0.2

100 200 300 400 500 600 700 800 900 1000

Ping Seq #

(a) [PM—PM] no load

2.5 — T T T T T T T I

Ping Frequency (Inter-Arrival) |
10ms X ims x|

\
[100ms

100 200 300 400 500 600 700 800 900 1000
Ping Seq #
(b) [VMI1 — VM2] (no CVM)

Figure 4: Ping RTT between two different PMs and two VMs running on them. The VMs
are of type Para-virtualization.

Ping Frequency (Inter-Arrival)

\
[100ms 10ms X 1ims

70 T T T T T T
60 I X ¥
50 -

40

RTT (ms)

VALY

03

T

100 2
Ping Seq #
(@) VM1 with 1 CVM

00 400 500 600 700 800 900 1000

RTT (ms)

80
70
60

50 |

40

30

20

10

[Ping Frequency (Inter-Arrival) |
[100ms 10ms X ims ¥

K -
[PREOMBCROCIK OB K HOKORBKORK MIBK IORGKX K K
¥ i

XX x X X

Emﬁﬁ%M%M X oWk Rk MWX{

Xx

L X i

L3y el Sy | IS7NIEVATAY AN YN

100 200 300 400 500 600 700 800 900 1000

Ping Seq #
(b) (VM1&VM?2 with 1 CVM)

Figure 5: RTT between two VMs running on two PMs. The VMs are co-allocated CPU
core with another CVM.

affinity (i.e., pinning) of each VCPU to a set of CPU cores. This is a typical setting
for current IAAS data centers where customers rent out VMs to deploy their own
applications or perform certain tasks. We observe a large jump in the RTT of VM-
to-VM when the sender is co-allocated CPU cores with only 1 CVM as shown in
Figure [5a] The average RTT jumps drastically to 30.010,29.357,29.411 ms for

13

intervals of 100,10,1 ms, respectively. The RTT jumps more frequently above
these values when 1 CVM is pinned down to the same CPU core of the receiver
VM. This clearly suggests that the extra delay is introduced by the hypervisor
scheduling delays which slows down the processing of the interrupts of the guest
VMs leading to an increase in the RTT up to values of ~ 30ms. This value is
not surprising since Xen hypervisor sets a scheduling time-slice of 30 ms for the
guests which will be fully used by any CPU-bound VMs delaying IO-bound VMs.
We repeat the experiment but co-allocate 1 CVM with the receiver VM2 as well.
Figure [5b|shows that the average RTT values jumps frequently to levels above the
30 ms while the average RTT becomes 30.091,30.687,33.011ms for intervals of
100, 10, Ims, respectively. The values larger than the 30ms bar indicates that the
scheduling delay at the receiver affects the time the VM has to wait to process
incoming data and send replies.

3 The Proposed Methodology

Since, most public data centers adopt the so-called [aaS model, the operating sys-
tem and thus the protocol stack in the VM are under the full control of the tenant
and cannot be modified by the cloud service provider. Hence, in this report, we
design a cross-layer recovery mechanism to address the shortcomings of TCP in
data centers without the need for modifying TCP itself. The design requirements
of our framework are:

1. Improve the FCT of latency-sensitive applications (mice).

2. Friendly to throughput-sensitive long-lived (elephant) flows (i.e., do not
sensibly degrade their throughput).

3. Compatible with all existing TCP-flavors (i.e., modifications must be in the
hypervisors, which are fully under the control of the DCN operator).

4. Simple enough to appeal to cloud service operators for deployment.

With these requirements in mind, we propose T-RACKSs system that actively
infers packet losses by tracking per-flow TCP ACK numbers and proactively in-
vokes the FRR mechanism of TCP. The goal is to help certain TCP flows recover
from losses instead of waiting for TCP minRTO. The proposed intervention hap-
pens only when the loss is certain, leading to a significant improvement of recov-
ery times, and hence the FCT of TCP.

To explain our idea and its effectiveness, we first need to learn to distinguish
the symptoms (e.g., packet losses and recovery via RTO) from the pathology (e.g.,

14

the value of the RTO). More specifically, many schemes proposed in the literature
to deal with TCP congestion in data centers mistakenly treat packet losses as the
direct culprits behind the FCT degradation and devise complex mechanisms to
curb them, treating them as the pathology. Actually by design of TCP, packet
losses are inevitable; they are an integral part of the protocol and are used to
convey symptoms of congestion to the source. To understand why packet losses
result in such long delays in data center networks, we collect measurements from
our testbed with realistic traffic-workloads to pinpoint the root causes of such in-
creased latency. Even though, a number of measurement studies [[18} 9} 6] have
shown varying latencies in data centers environments, we here dive deep into the
packet level analysis of the flows to understand TCP behavior and its loss recov-
ery mechanisms. An earlier work [33]], based on data-center measurements, found
that the timeout mechanism is to blame for the long waiting times and proposed
the simple solution of reducing the minRTO value for TCP in data center environ-
ments. This approach ultimately solves the problem, reduces FCT of flows and
mitigates TCP-incast congestion effects in data centers. However, 1) it requires
the modification of TCP and ii) there is no single value of the minRTO that fits
all environments: a minRTO that works in the data center (e.g., between a web
server and the backend database server) will definitely lead to spurious timeouts
for customer-facing connections (e.g., the Internet side). A recent RFC [23]] pro-
posed the so-called tail loss probe (TLP) which recommends sending TCP probe
segments whenever ACKSs do not arrive within a short Probe TimeOut (PTOﬂ In
addition to requiring changes to TCP, this approach suffers from two additional
problems: i) probe segments may be lost and ii) probe packets may worsen the
in-network congestion, especially during TCP-incast.

Next, we will introduce our proposed T-RACKSs, discuss its design aspects
and highlight how it achieves its goals. Following the previous discussion, the
design is based on the following observation: As packet losses are inevitable for
the proper operation of TCP, the key to reducing the long latency and jitter is not
to try and avoid losses but rather try to avoid long waiting after losses occur.

We then introduce the rationale of our design choices: /) knowing that all
TCP flavors adopt the fast retransmission mechanism as a way to detect and re-
cover from losses without incurring the expensive timeouts, if one can force the
mechanism into action regardless of the nature of loss, the resulting system would
be transparent to the TCP protocol in the VM; 2) TCP relies on a small amount of

4PTO is set to minimum of (2 x srtt, 10ms) if inflight > 1 and to (1.5 x srtt + worst case
delayed ACK (i.e., 200ms)) if inflight==

15

dupACKs to activate FRR, however in the majority of cases (esp. for short-flows)
there aren’t enough packets in the pipe to trigger dupACKs. To achieve this, we
propose to use “fake” TCP ACK signaling from the hypervisor to the VM. For
this, the hypervisor maintains a per-flow timer B = o« RT T + rand (RTT) to wait
for the ACKs before it triggers FRR with fake dupACKs.

The resulting T-RACKSs system consists of two components mainly the in/out
packet processing operation driven by Algorithm [I] and the ACK time-out han-
dling shown in Algorithm [2]

Algorithm [T] consists of three main functions: per-flow state maintenance on
arrival and on departure and a timeout event handler. In the initialization (lines
1—6), an in-memory flow cache pool is created to be invoked for new flow ar-
rivals. This approach speeds up flow objects creation. To efficiently identify flow
entries, a hash-based flow table is created and manipulated via the Read-Copy-
Update (RCU) mechanism. Other parameters and variables are set in this step as
well. Before each TCP segment departure, the program (lines 7—15) performs
the following actions: i) In (line 8), the packet is hashed using its 4-tuple and its
corresponding flow is identified; ii) In (lines 9 — 15), if a SYN arrives or the flow
entry is inactive (i.e., a new flow), the flow entry is reset then TCP header info
and options are extracted to activate a new flow record. iii) In (lines 13 — 14), If
Data packet arrives, the last sent sequence number and time of the flow is updated
accordingly;

Next, on each TCP ACK arrival, the program (lines 16 — 31) performs the follow-
ing actions: i) In (line 17), the flow entry is identified using its 4-tuple; ii) In
(lines 18 — 30) if ACK sequence number acknowledges a new packet arrival, the
last seen ACK sequence and time is updated. The dupACK counter is reset. The
flow is set as elephant if it exceeds a threshold ¥; iii) In (lines 28 — 30), if ACK
number acknowledges an old packet (i.e., duplicate ACK), Drop dupACKs if the
flow is in recovery mode, or increment the number of dupACKs seen otherwise;
iv) In (lines 31), we update the TCP headers information of the ACK, we discuss
this part in more detail later.

Algorithm [2| handles the global (per 1 ms) timer expiry events and performs the
following actions for all active non-elephant flows in the table: i) In (lines
1 —10), if no new ACK acknowledging a new data has arrived for 8 secs since the
last new ACK arrival, the flow times-out and then an ACK using the last success-
fully received ACK sequence is crafted. Then, T"-RACKSs sends it out to the send-
ing process and/or VM residing on the same end-host. An exponential backoff
mechanism is activated to account for various dupACK thresholds set by senders
TCP stack or OS. ii) In (lines 11 — 14), if the backoff time and yet no new ACK has

16

been received, another ACK is created and sent out to the corresponding sender.
Each time the algorithm backs-off exponentially per retransmission until the hard
coded minRTO timeout is reached. iii) In (lines 15 — 18), If backoff approaches
the minRTO (i.e., 200ms), stop triggering Fast-Retransmit (by resetting the soft
state) and let the sender TCP RTO handle the recovery of this segment. iv) In
(line 19), If the inactivity period exceeds 1 sec, flow (f) entries are hard reset.

3.1 System Design and Algorithms

T-RACKSs (i.e., Algorithm [I)) relies on per-flow TCP header information of ACK
packets to maintain per-flow TCP state information. We propose a light-weight
end-host (hypervisor) shim-layer to implement T—RACK Figure @ depicts the
deployment of T-RACKSs on datacenter end-hosts and shows its role in our system.
It shows that flows are hashed into a hash-based flow-table using the 4-tuples
(i.e., SIP, DIP, Sport and Dport) whenever SYNs are signaled or a flow sends
after a long silence period. For instance, when VM1 on the sender established
a connection with the same VM on the receiving end-host, a new flow entry is
created (i.e., flow entry A2 : X2). The T-RACKSs module uses the FlowTable to
store and update TCP flow information (i.e., the last ACK seq#, time and so on) for
each ongoing TCP flow. The module intercepts the outgoing ACKs and incoming
Data to update the current state of each tracked (non-elephant) flow. Whenever
packets are dropped and the receiver gets enough DATA to send enough dupACKs,
the loss is recovered by FRR. In this case, the module does not intervene and the
long RTO timeout is avoided. However, when the receiver fails to receive enough
DATA to send dupACKs necessary to trigger FRR, then T-RACKSs intervenes by
sending Fake dupACKs (or FRACKSs) to the sender. Typically, the sender will
trigger FRR to retransmit the lost segments within a reasonable time before the
long TCP RTO is triggered. For example, in Figure [, when Data segments of
flow A1 : X1 are lost and the T-RACKSs flow entry times-out, the module generates
a FRACK and starts the exponential backoff to force the sender into FRR.

3.2 Practical Aspects of T-RACKSs System

T-RACKSs System: is built upon a light-weight module at the hypervisor layer
tracking a limited per-flow state, in the simplest case, it tracks TCP’s identifica-

ST-RACKs can equally be implemented in the host NIC or in the switching chip of the ToR
switches. This approach is feasible due to the relatively small number of flows at the end-host NIC
or at the ToR level. This hardware extension is part of our future work.

17

/Sender | Receiver

/
S N
/
B1 ‘
|]
VM5l (VM4 [VM3I VM2 G Process E
i i g out ol
| Hypervisor [<] 8
| .l|- _ Flow#{L ACK o | Process —
I ' —]|A1: 2 IN > >
RACK Module [S]AMXY 7 2 2
| — -y 3 o =
o

| TO_timer_handler |

Y| NIC | A2:X2| 25 =

BA1:DATHA2:DAT| BL:DAT | X1:AcK Jx1:FRACK | x2:ACK [Y1:ACK

Figure 6: T-RACKs System: It consists of an end-host module that track TCP flows in-
coming ACKs and generates FAKE ACKs whenever a flow timesout

tion 4-tuple (IPs, Ports), per-flow last ACK number and the time-stamp of the last
non-dupACK. The system in spirit is similar to recent works in [8} [11] that aim
to enabling virtualized congestion control in the hypervisor or enforcing it via
the vswitch without cooperation from the tenant VM. These approaches require
fully-fledged TCP state information tracking and typically implement full TCP
finite-state machines in the hypervisor. On the other hand, T-RACKSs tries to min-
imize such overhead by tracking the minimal amount of necessary information
and implementing only the retransmission mechanism.

T-RACKSs Complexity: emerges from its interception of ACKs to update the
last seen ACK information. However, since it does not perform any computation
on the ACK packetﬂ it does not add much to the load on the hosting server nor
to latency. This claim is supported by our observation and collected traces from
our experiments on our cluster. A hash-based table is used to track flow entries
of active non-elephant flows. In the worst case, when hashes collide, a linear

© ACKs may be updated whenever necessary in certain cases for example when SACK is in use
to add SACK blocks if not present

18

0.8
0.6
[N
o
o
0.4
0.2
Fast Retransmit ——
N RTO Retransmit —<—
0/ | s PR s P s P s PR

1 10 100 1000 10000 100000 1e+06
RTT variation (usec)

Figure 7: RTT variation between transmission time and time of retransmission (i.e.,
ARTT =RTT,,—RTT,)

search is necessary within the linked-list. However, this worst case is rare due to
the small number of flows originating from a given end-host. Typically, end-host
CPUs internally can sustain rates of 60+ Gbps of packet processing. Hence, the
few processing required by the program (i.e., all the operations including lookup
in hash tables) would not affect the achieved TCP throughpu

Spurious retransmissions: T-RACKs may raise concerns related to the pos-
sibility of introducing spurious retransmissions and even making in-network con-
gestion worse. This boils down to answering similar question when choosing the
right RTO value in TCP. For this purpose, we refer to a previous study [4], that
essentially showed that even when a relatively bad RTT estimator is used, set-
ting a relatively high minimum RTO (i.e., in hundreds of milliseconds) can help
avoid many spurious retransmission in WAN transfers. This fact is supported by
a subsequent study [37] that shows significant changes (or variance) in internet
delays. Recent works [10, [21]] show similar behavior within current datacenters.
In our testbed setup, we observed noticeable variation in the measured RTT. Fig
shows the variation in smoothed RTT measurement of TCP sockets between the
time of transmission of a packet and its fast retransmission or RTO retransmis-
sion, respectively. These variations can be mainly attributed to the beginning of

7TCP throughput is generally bound by the minimum its end-host NIC share and the in-network
bottleneck share

19

some heavy background traffic, imbalance introduced by load balancing, or VM
migrations, and so on. We note and agree with the aforementioned works that ob-
served packet delays may not be mathematically nor stochastically steady. Hence
T-RACKs ACK RTO (f) calculation shown in Algorithm [1|strikes a balance be-
tween rapid retransmission and the risk of causing spurious retransmission.

T-RACKs RTO f: Following up the previous discussion, in most of our
experiments and simulations, we choose a value for ACK RTO (f3) to be (> 10)
times the dominant measured RTT in the data center. We believe, and the results
show, that this value achieves a good tradeoff between not having many spurious
retransmission and at the same time not being too late in recovering from losses.
We further adopt the well-know exponential back-off mechanism [27] for subse-
quent RTO () calculations until either the loss is recovered or TCP’s default RTO
(i.e., minRTO) is close enough to timeout.

Synchronization of retransmissions: Since T-RACKSs relies on a timer for
ACK recovery, such timer may result in synchronization of retransmissions from
different VMs on different hosts resulting into incast-like congestion. We studied
the behavior of such synchronization effect in a simulation, by setting the same
ACK RTO. The results show repeated losses due to possible synchronized retrans-
missions. A viable solution for de-synchronizing such flows would be to introduce
some randomness in the ACK RTO ultimately resulting into fewer flows experi-
encing repeated timeouts. We adopted this approach which justifies the random
delay in the calculation of the RTO f3.

TCP Header manipulation: TCP does not accept any packet with incon-
sistent timestamp, hence the timestamps are updated per ACK arrival with local
jiffies variable to keep the consistency of timestamps whenever FRACKSs are sent.
For SACK enabled TCPs, fake SACK block information needs to be inserted for
incoming ACKs (with no SACK blocks in TCP header) to indicate a small gap
equal to the minimum segment size (i.e, 40 Bytes) after the last ACKed data.

Security Concerns: the receipt of each dupACK gives a signal for the sender
that one of the transmitted segments has left the network. Based on this intuition,
RFC 2581 suggested what is known as Fast Recovery Algorithm. In Fast Recov-
ery, Cwndis set to ssthresh+ ¢ x MSS then for each additional dupACK, Cwndis
artificially inflated by 1 MSS to account for the segment that left the network. This
can be exploited to launch ACK spoofing attack [30] on the senders as the senders
have no way to verify that incoming dupACKs are valid from the legitimate re-
ceiver or spoofed from some attacker. RFC 5681 released in 2009 addressed this
particular attack and proposed implementing Nonce and Nonce-Reply as a way
of verifying the source of dupACKs. However, such solution would require intro-

20

duction of extra TCP headers prohibiting its deployment in real TCP implemen-
tations. In T-RACKs, we address such attack, by dropping dupACKS whenever
ACK timer expires and entering a recovery state. This approach is adopted to dis-
able Cwndartificial inflation during recovery and at the same time prevents ACK
spoofing. A point worth-mentioning is that under T-RACKSs dupACKs are gener-
ated from the hypervisor layer which is under the control of the trusted datacenter
operator.

TCP semantics: is conceptually violated since dupACKs should reflect pack-
ets following the lost one being received successfully. However, according to
RFC 5681, the network could possibly replicate packets and hence the FRACK
segments could be treated as replicated packets from within the network.

4 Simulation Analysis

In this section, we study the performance of T-RACKSs to verify if it can achieve
its goals in a large-scale simulatiorﬂ To this end, we conducted a number of
packet-level simulations using ns2 and compared T-RACKs performance against
the state-of-the-art schemes.

4.1 Single-Rooted Tree Topology

To study the behavior of TCP in response to packet losses and how likely it may
recover quickly with the help of T-RACKs (Note, we refer to T-RACKs as RACK
in the figures). We conducted a number of packet-level simulation experiments
which covers a wide range of TCP and AQM settings. We also conducted simula-
tions using congestion control mechanisms imported from Linux kernel (i.e., Cu-
bic and New-Reno (abbreviated as Reno)). We use ns2 version 2.35 [26], which
we have extended with T-RACKs mechanism inserted as a connector between
nodes and their link in topology setupﬂ In addition, we patched ns2 using the pub-
licly available DCTCP patch. we use in our simulation experiments speed links of
1 Gb/s for sending stations, a bottleneck link of 1 Gb/s, low RTT of 100 us, the de-
fault TCP RT O,,;,, of 200 ms and TCP initial window of 10 MSS. We use a rooted
tree topology with single bottleneck at the destination and run the experiments for
a period of 15 sec. The buffer size of the bottleneck link is set to be more than
the bandwidth-delay product in all cases (100 Packets), the IP data packet size is

8Note, for brevity, we refer to T"-RACKSs as RACK in the figures
9Simulation code is available upon request from the authors.

21

CDF

0.8

0.6

0.4

0.2 |

1500 bytes. We designed one elephant-free and one elephant-coexisting simula-
tion scenarios where N (mice) TCP flows send a 14.6KB file (i.e., 10 MSS) while
% (elephant) flows send non-stop during the simulation. Mice flows start with
a short inter-start time that is drawn from an exponential distribution with mean
equal to transmission time of one packet. The simulation has 5 epochs every 3 sec
and the order of servers are varied in each epoch by drawing server number from
a uniform distribution. We study packet loss, the likelihood of fast recovery and
recovery time. We first study TCP newReno with DropTail, TCP with RED-ECN,
TCP with Random Drop AQM and DCTCP covering the most common TCP and
AQM settings.

First, Fig [§| shows the flow completion time for different schemes when T-
RACKSs is not enabled. They show significantly high FCT in DropTail and DropRand
cases and schemes such as RED ECN marking and DCTCP can help regulate the
queue at certain level which helps improve the FCT.

Average FCT Average FCT

T 06 | .
18
[a)]
- O "]
04| - .
(a) 20marapeting flows .
DropRand] 02 L &) 8(3[1?@%}176&145’ Hows
"BoTop — - - REDEON
. . . DCTCP —) _ i REDECN ----- .
Eigure 8: Alsimidationsecendrio involving, qnumber of oS and, the resulting FCT
130 0140 150 160 170 180 190 200 0
Hsdisplaye 150 200 250 300 350 400 450 500
Time (ms)

We repeat the same simulation however with T-RACKSs enabled on end-hosts
to enforce dupACKs whenever the T-RACKs timer expires. Fig[§] shows signifi-
cant improvement to the average FCT in 20 and 80 flow cases for all schemes and
AQMs in use. We notice a significant improvement for FCT for both cases where
the advantage of DCTCP and RED-ECN over DropTail and DropRand become
more obvious. This is attributed to the low queue occupancy they can sustain
when Timeouts are handled properly.

22

CDF

0.8

0.6

0.4

0.2

Average FCT Average FCT

d — 0.6

w
[a)]
(@]
/ . 04 .
-7 (a) 2%%:‘%%9@‘&“3 Hows (b) 80meyrapeting flows
REDECN - - - - -

. Figure 9: A simulpgion scendrio invol&z g different nymber 6CHOws-with T-RACKs help

85 9 95 10 wiaditheiresaltaeg BCT is displapedso 60 80 100 120 140 160

Time (ms) Time (ms)

Now we repeat the same experiments however we introduce a long-lived back-
ground traffic to put all schemes under stress and see how T-RACKSs can handle
such scenario. Fig|10|shows that still T-RACKSs can deliver almost the same per-
formance improvements for schemes in 20 and 80 flows cases alike.

4.2 Large-Scale DataCenter Topology

Since any end-host based scheme is assumed to be scalable, to verify this, we ex-
periment with T-RACKSs in a larger scale-setup with varying workloads and flow
size distributions. For this purpose, we conduct another packet-level simulation
using a spine-leaf topology with 9 leafs and 4 spines using link capacities of 10G
for end-hosts and over-subscription ratio of 5 (the typical ratio in current produc-
tion datacenters is in range of 3-20+). We again examine scenarios that covers a
TCP-NewReno, TCP-ECN and DCTCP operating along with DropTail, RED and
DCTCP AQM respectively. we use a per-hop link delays of 50 us, TCP is set to
the default TCP RT O,,;;, of 200 ms and TCP is reset to an initial window of 10
MSS, and a persistent connection is used for successive requests. The flow size
distribution for workload 1 and workload 2 are shown in Fig [ITa] which captures
a wide range of flow sizes. The flows are generated randomly from any host to
any other host with the arrivals following a Poisson process with various arrival
rates (A) to simulate various network loads. Fig shows the inter-arrival times

23

CDF

CDF

0.8

0.6

0.4

0.2

Average FCT Average FCT

1 T T T T T T 1 . T N o=t T T T
| f
i \
i B 0.8 1 R
; '
| . 06 J .
' LDL 1)
- s |l
| - 0.4 i i
o (@ owspritheut TRACK , { (b) 80 flowspwitheut I-RACKs
o DropRand “ DropRand
H REDECN - ---- REDECN -----
o DCTCP — - DCTCP — -
| | | | | | | | | 0 | | | | | | |
100 150 200 250 300 350 400 450 500 2000 4000 6000 8000 10000 12000 14000
Time (ms) Time (ms)
Average FCT Average FCT
T T 1 N T N =t =" T T T
‘,- -
\
B 0.8 1 R
1 0.6 J i
LQL 4
S|
, 0.4 -El i
(¢) 20 flowsravish-T-RACKs | (d) 80 flowpsawish-I-RACKs
DropRand - DropRand

REDECN ---- - REDECN
Figure 10: A sinudeigbn-scenqario involng different pumber (3@ER26und|80) of flows and

0
50 100 15¢he aesulebag BOT is displayed 2000 4000 6000 8000 10000 12000 14000
Time (ms) Time (ms)

distribution for various loads ranging from (30% to 90%). Finally, buffer sizes on
all links are set to be equal to the bandwidth-delay product between end-points
within one physical rack. We report the average FCT for small flows and all flows
(i.e., small [0-100KB], medium [100KB - 10MB] and large [I0MB+]) as well
as the number of total timeouts in each case. We do not use T-RACKs elephant
threshold, and T-RACKs RTO is set to 10 times the measured RTT in this experi-
ment.

Figure [12]shows the average FCT for small, medium and all flows as well

24

CDF (%)

0.8

0.6

0.4

0.2

Workload2 =
Workloadl = =
1 1 1

1000 10000100000 1x106 1x107 1x108
size (bytes)

(a) CDF of flow size

CDF (%)

0.8

0.6

0.4

0.2

load-30%

load-40%
load-50%
load-60%
load-70%
load-80%
load-90%

(b) CDF of inter-arrival time

1000
Inter-arrival (usec)

Figure 11: Flow characteristics: (a) Actual Flow size distribution (b) Inter-arrival times
for various network load

as the total timeouts experienced by all flows in the websearch workloads. It is
evident that in this workload that timeouts have a significant impact on the FCT
of small TCP flows regardless of congestion control type and AQM in operation.
This is where T-RACKSs becomes of the utmost benefit to small flows in improv-
ing their FCT. In addition, Fig shows performance gains for all flows, the
reasoning behind the improvement of overall FCT for all flows is for two reasons:

¢ In the experiments, elephant threshold is disabled which allows for all flows
to benefit from the improvement provided by T-RACKGs.

e When small flows finish faster, they leave the network and occupied re-
sources becomes available for large flows.

Finally, Fig shows the total number of RTO seen by TCP flows. The results
strongly suggest that the improvement in FCT is mostly attributed to the lower
number of RTOs when T-RACKSs is taking care of fast recovery for TCP flows.
Similarly, Figure [13] shows the average FCT for small, medium and all flows
as well as the total timeouts experienced by all flows in the datamining workloads.
In this case, still all flows see noticeable improvement in FCT, however the per-
formance gains are less than the websearch case. Furthermore, since almost 80%
of flows are of size less than 10KB, hence overall they experience lesser timeouts.
In such case, DCTCP can provide significant improvement in the FCT due to its

25

Average FCT in (s)

Average FCT in (s)

0.25 T T T T T T T
—y
0.2 i
0.15 F ././././I—I/I _
0.05 4
0 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100
Network load
DCTCP == DT == RED
DCTCP-RACK == DT-RACK -E- RED-RACK -e-

(a) Small Flows: Average FCT

0.26 T T T T T T

0.24

0.22 |

0.2 F

0.18

0.16

0.14 |

012 |

0.1

Network load
DCTCP == DT == RED

DCTCP-RACK ¢ DT-RACK 45+ RED-RACK ©r
(¢) All Flows: Average FCT

AVG FCT in (s)

Timeouts (#)

0.28 T T T T T T
0.26 i
024 F .
022 F .
02 .
018 | i
016 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100
Network load
DCTCP == DT RED
DCTCP-RACK ¢ DT-RACK 45+ RED-RACK ©r
(b) Medium Flows: Average FCT
10000 T T T T T T T
9000 [-
8000 [R
7000 | _
6000 | .
5000 | .
4000 | 1
3000 | R
2000 | .
1000 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100
Network load
DCTCP = DT % RED
DCTCP-RACK ¢ DT-RACK 45+ RED-RACK ©r

(d) All Flows: Number of RTO

Figure 12: Performance metrics with various network load in range (30%, 90%) of web-
search workload (i.e., workload 1)

ability to regulate the queue at small operating regime. And yet T-RACKs can
provide for added improvement to DCTCP performance.

26

00055 T T T T T T 0046 T T T T T T T

0.005 F 4 0.044 B
0.0045 4 0.042 | 4
2 0004} 1 . My 1
c N . - 4
o 00035 1 ; os
0 o003} -
L 0003} . 5
g v 0.034 F b
. - . O
g 00025 ¢ oom| |
; 0.002 4 0.03 | |
0.0015 | R 0.028 F i
0.001 | :_-_:—-‘.‘—’-",*-,-'-' 1 0.026 | 1
0.0005 ‘|'7 T | 1 1 1 1 0.024 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Network load Network load
DCTCP == DT RED DCTCP == DT RED
DCTCP-RACK =3¢ DT-RACK RED-RACK -e- DCTCP-RACK == DT-RACK RED-RACK -e-
(a) Small Flows: Average FCT (b) Medium Flows: Average FCT
0-136 T T T ! T T T 350 T T T T T T T
0.135 | 1
300 4
0.134 | 4
CREREERS 1 250 1
£ #
- 0.132 | . S ol |
Co0131f . 3
[0} - 4
? 013 L i £ 150
0 F
2 0.129 L 100 F J
0.128 1
50 F 4
0.127 | 4
2 X 3
0126 1 1 1 1 1 1 1 0 d
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Network load Network load
DCTCP = DT RED DCTCP == DT RED
DCTCP-RACK ¢ DT-RACK RED-RACK 9+ DCTCP-RACK ¢ DT-RACK RED-RACK ©
(¢) All Flows: Average FCT (d) All Flows: Number of RTO

Figure 13: Performance metrics with various network load in range (30%, 90%) of
datamining workload (i.e., workload 2)

4.3 Sensitivity to Choice of T-RACKSs RTO Timer

We here repeat the last simulation experiment using websearch workloads with
various values for the control variable o which defines the RTO value. The vari-
able « is defined in terms of an RTT multiplicative factor and values in the range

27

[1, 5, 10, 50, 100] is used. The purpose of this simulation analysis is to assess the
sensitivity of T-RACKSs to the chosen value of ¢. The simulation settings, flow
sizes, inter-arrival times and network loads are the same as in the previous setup.
We report here the achieved FCT of small and all flows in each case for DropTail,
RED and DCTCP. As shown in Fig the FCT is greatly affected by the choice
of the parameter . The lower values of « (i.e., 1 and 5) tend to cause unnecessary
spurious timeouts and exacerbate congestion in the network. On the other hand,
excessively large values for o (i.e., 50 and 100) tend to be too conservative and
result in TCP flows recovering later than they should. We can see a value of 10
achieves a good trade-off between the two cases and can help improve the FCT
by recovering faster to avoid large amount of spurious timeouts.

5 Implementation and Experiments

In this section, we discuss the implementation details of T-RACKSs as a loadable
kernel module in Linux Kernel then assess its performance by reproducing syn-
thetically workloads encountered in production datacenters. T-RACKSs is a trans-
parent shim-layer residing between the TCP/IP stack (or VMs) and the link-layer
(or Hypervisor). It was implemented by leveraging the NetFilter framework [24]]
which is an integral part of Linux OS. Netfilter hooks attach to the data path in the
Linux kernel just above the NIC driver and below the TCP/IP stack. This imposes
no modifications to the TCP/IP stack of the host OS nor guest OS and being a
loadable module, it allows for easy deployment in current production datacenters.
As shown in Fig [6] The module intercepts all incoming TCP packets destined to
the host or its guests right before it is pushed up to TCP/IP stack handling (i.e.,
at the post-routing hook). First, the 4 identifying tuples are hashed and associ-
ated flow index into the Hash Table is calculated via Jenkins hash (JHash) [14]].
Then, TCP packet headers are examined and the flag bits are used to choose the
right course of action (i.e., SYN-ACK, FIN or ACK) following the logic in Algo-
rithm [I] The module does not employ any packet queues to store the incoming
packets, it only stores and updates flow entry states (i.e., ACK seq#, arrival time
and so on) on arrival of segments. Since T-RACKSs does not require fine-grained
timers in micro-second scale, the timer used are the native Linux kernel timer
(i.e., in millisecond-scale) traditionally used in the protocol stack. In addition, T-
RACKs uses a single timer for all active flows (firing every 1 ms) to handle RTO
events. These design choices help reduce the load on the end-host servers and
make T-RACKSs module as lightweight as possible.

28

To put T-RACKSs to the test, we use a small-scale testbed consisting of 84 vir-
tual servers interconnected via 4 non-blocking leaf switches and 1 spine switch.
As shown in Figure [I5] The testbed cluster is organized into 4 racks (rack 1, 2, 3
and 4). Each server per rack is connected to a leaf switch via 1 Gbps link. The
spine switch is realized by running a “reference_switch” image on a 4-port NetF-
PGA card [25] which is installed on a desktop machine. The servers are loaded
with Ubuntu Server 14.04 LTS with kernel version 3.18 which includes a func-
tional version of DCTCP protocol [[1]. The T-RACKSs end-host module is invoked
and installed on the host OS whenever necessary only. Unless otherwise men-
tioned, T-RACKSs runs with the default settings (i.e., RTO of 4 ms and elephant
threshold set to 100 KB).

We use the traffic generator described in Section 2] to run the experiments
with realistic traffic workloads shown in Figures @ and @ In addition, we have
installed the iperf program [[13]] to emulate long-lived background traffic (e.g., VM
migrations, backups and so on) in certain scenarios. We setup different scenarios
to reproduce an one-to-all and all-to-all w/wo background traffic. In one-to-all,
clients running on the VMs in one rack send requests randomly to any of all other
servers in the cluster. While in all-to-all scenario, all clients send requests to
any of all other servers in the cluster. If background traffic is introduced, we
run a continuous long-lived iperf flows in all-to-all fashion to evaluate T-RACKs
under sudden and persistent network load spike. Finally, in the results, we classify
flows with size <= 100KB as small, > 100KB and <= 10MB as medium and
>= 10MB as large.

The objectives are: i) to verify if T"-RACKSs, helps short TCP flows finish faster
and more flows meet their deadlines. ii) to verify how T-RACKs affects the per-
formance of medium and large flows in terms of FCT and average throughput; iii)
to quantify T-RACKSs robustness in unexpected network loads (i.e., background)
in the network.

5.1 Datacenter Workloads based Experimental Results

One-to-All scenario without Background Traffic: we run one-to-all scenario
and report the performance of average FCT for small flows and all flows and the
number of small flows that missed their deadlines. We set a hard deadline of
200ms for small flows however we do not terminate the flow even if it misses the
deadline. The traffic generator is deployed on each single client running on an
end-host in the cluster and is set to randomly initiates 1000 requests to randomly
picked servers on all other racks. Figures [16al [16b| and [16¢| show the average

29

FCT and missed deadlines for small flows as well as average FCT for all flows
in websearch workload, respectively. While, Figures [16d] and [16f, show the
average FCT for short flows in data mining, educational, private DC workloads,
respectively. we make the following observations: i) for all workloads, T-RACKs
helps small flows regardless of TCP flavor in use in both the average and variation
of FCTs. Compared to Reno, Cubic and DCTCP, T-RACKSs reduces the average
FCT of small flows by ~ (34%,49%,19%) for websearch, ~ (18%,29%,—) for
datamining, ~ (69%,—,35%) for educational and ~ (69%,—,35%) for private
DC workloads. We notice that DCTCP improves FCT over its RENO and CU-
BIC counterparts and T-RACKSs could improve its performance in terms of the
missed deadlines in websearch. The average FCT of small flows in educational
and private workloads has seen a slight increase of FCT with T-RACKSs in certain
cases. In these workloads, the network load is quite lite (as shown by the small
FCT without T-RACKSs) and hence T-RACKSs added extra overhead surpasses its
benefits. ii) for websearch workload, T-RACKSs reduces the missed deadlines for
short flows by ~ (55%,53%,35%) for RENO, Cubic, and DCTCP, respectively.
iii) T-RACKSs improves slightly the overall average FCT which is attributed to
faster FCT of short flows who leave the network bandwidth for medium and large
flows. The improvement was by ~ (16%,5%) for Reno and Cubic, respectively.
However, for DCTCP case, the overall FCT slightly increases due to the selective
small flows (only) T-RACKSs intervention.

One-to-All scenario with Background Traffic: to put T-RACKSs under a
true stress, we run the same one-to-all scenario with all-to-all background traf-
fic that shares the network with the running workload. We report similar met-
rics as in the aforementioned case. Figures [I7a] [17b| and [17c| show the aver-
age FCT and missed deadlines for small flows as well as average FCT for all
flows in websearch and Figures and [17f] show the average FCT for short
flows in data mining, educational, private DC workloads, respectively. We ob-
serve the following: i) T-RACKs still improves the average FCT of small flows
for all workloads regardless of TCP congestion control in use. As shown com-
pared to Reno, Cubic and DCTCP, T-RACKs reduces the average FCT of small
flows by ~ (38%,25%,7%) for websearch, ~ (11%,5%,3%) for educational and
~ (13%,13%,4%) for private DC workloads. The improvement increases for
datamining workload to ~ (36%,67%, 14%) since it includes a wider range of
short flows. ii) T-RACKSs reduces the missed deadlines for short flows of web-
search by ~ (40%,33%,39%) for RENO, Cubic, and DCTCP, respectively. iii)
T-RACKs still improves for the overall average FCT ~ (7%,5%,2%) for Reno
and Cubic, and DCTCP respectively.

30

All-to-All scenario without Background Traffic: we run all-to-all scenario
where all clients on all 4 racks initiate randomly 1000 requests to randomly picked
servers in any of the 4 racks. Figures [184] [18b| and [18c| show the average FCT
for short flows in data mining, educational, private DC workloads, respectively.
All-to-All introduces considerably higher network load, however, T-RACKSs still
can deliver significant improvements in the FCT regardless of the more complex
nature of the All-to-All traffic.

In summary, the experimental results show the performance gains of T-RACKs
especially for small flows, that constitute the lion’s share in data centers, without
harming larger flows. In particular, they show that:

e T-RACKSs minimizes the variance of small TCP flows completion times and
significantly reduce the missed deadlines.

e T-RACKSs can maintain its gains even if bandwidth-hungry elephants are
hogging the network.

e T-RACKSs efficiently handles various workload and it is completely agnostic
to TCP flavor.

o T-RACKSs fulfilled its requirements with no assumptions about nor any mod-
ifications to in-network hardware nor the TCP/IP stack of guest VMs.

6 Related Work

A number of research works have found, via measurements and analysis, that TCP
timeouts are the root cause of most throughput and latency problems in data center
networks [[15 36} [31]. Specifically, [33] showed that frequent timeouts can harm
the performance of latency-sensitive applications. Numerous solutions have been
proposed. These fall into one of four key approaches.

The first mitigates the consequence of long waiting times of RTO, by reducing
the default MinRTO to the 100 us - 2 ms [33]. However, while very effective, this
approach affects the sending rates of TCP by forcing it to cut CWND to 1; it relies
on a static MinRTO value which can be ineffective in heterogeneous networks;
and it imposes modifications to TCP stack on tenant’s VM. The Second approach
aims at controlling queue build up at the switches by either relying on ECN marks
to limit the sending rate of the servers [2], or using receiver window based flow
control [35]] or deploying global traffic scheduling [3\ 15} 22]].

31

These works achieved their goals and have shown they could improve FCT
of short flows as well as achieving high link utilization. However, they require
modifications of either the TCP stack, or introduce a completely new switch de-
sign, and are prone to fine tuning of various parameters or sometimes require
application-side information. The third approach is to enforce flow admission
control to reduce TimeOut probability. [12] has proposed ARS, a cross-layer sys-
tem that can dynamically adjust the number of active TCP flows by batching ap-
plication requests based on the sensed congestion state indicated by the transport
layer. The last approach, which is adopted in this report due to its simplicity,
and feasibility, is to recover losses by means of fast retransmit rather than waiting
for long timeout. TCP-PLATO [31] proposed changing TCP state-machine to tag
specific packets using IP-DSCP bits which are preferentially queued at the switch
to reduce their drop-probability enabling dupACKs to be received to trigger FRR
instead of waiting for timeout. Even though TCP-PLATO is effective in reduc-
ing time-outs, its performance is degraded whenever tagged packets are lost, in
addition, the tagging may interfere with the operations of middle-boxes or other
schemes and most importantly it modifies the TCP state machine of sender and
receiver.

7 Report Summary

In this report, we proposed an efficient cross-layer alternative to recover losses in
timely manner before the occurrence of timeout. Our proposed approach proved
to improve the FCT of time-sensitive flows and helps avoid throughput-collapse
situations. A small-scale data-center setup was used to collect packet-level and
TCP-socket traces to pinpoint clearly the root cause of long FCTs. Then we have
design T-RACKSs as a hypervisor-based (either sender-side or receiver-side) shim-
layer residing between TCP in guest VMs and the network. T-RACKs allows
TCP flows via transmission of fake dupACKS to efficiently recover from losses
via FRR without waiting for RTO. T-RACKSs is implemented as a linux-kernel
loadable module and the testbed experiments in our 84-servers setup show that
T-RACKs can improve the FCT and reduce missed deadlines for time-sensitive
traffic and achieve high-link utilization by preventing TCP throughput-collapse.
T-RACKSs system is also shown to be light-weight due to its minimal footprint
on end-hosts and is practical because it can be easily deployed in production en-
vironments. Finally, in public data centers, knowing that guest VMs and their
networking stack is out of the control of the DC operator, T-RACKSs proves to be

32

especially adequate for such environments as it does require no modifications to
guest TCP and no special hardware feature.

33

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

M. Alizadeh. Data Center TCP (DCTCP). http://simula.stanford.edu/ al-
izade/Site/DCTCP.html.

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. Data center TCP (DCTCP). ACM SIG-
COMM Computer Communication Review, 40:63, 2010.

M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker.
Deconstructing datacenter packet transport. In Proceedings of the 11th ACM
Workshop on Hot Topics in Networks (HotNets), pages 133—138, 2012.

M. Allman and V. Paxson. On estimating end-to-end network path prop-
erties. SIGCOMM Compute Communication Review, 29(4):263-274, Aug.
1999.

W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang. Information-
agnostic flow scheduling for commodity data centers. In Proceedings of the
12th USENIX Conference on Networked Systems Design and Implementa-
tion (NSDI), NSDI’ 15, pages 455-468, Berkeley, CA, USA, 2015. USENIX
Association.

T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data
centers in the wild. In Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement (IMC), IMC ’10, pages 267-280, New York, NY,
USA, 2010. ACM.

T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data cen-
ter traffic characteristics. SIGCOMM Computer Communication Review,
40(1):92-99, 2010.

B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown,
I. Abraham, and I. Keslassy. Virtualized congestion control. In Proceed-
ings of the ACM SIGCOMM, SIGCOMM ’16, pages 230-243, New York,
NY, USA, 2016. ACM.

B. A. Greenberg, J. R. Hamilton, S. Kandula, C. Kim, P. Lahiri, A. Maltz,
P. Patel, S. Sengupta, A. Greenberg, N. Jain, and D. A. Maltz. VL2: a
scalable and flexible data center network. In Proceedings of the ACM SIG-
COMM, volume 09, pages 51-62, 2009.

34

[10] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang,
B. Pang, H. Chen, Z.-W. Lin, and V. Kurien. Pingmesh: A large-scale system
for data center network latency measurement and analysis. In Proceedings
of the ACM SIGCOMM, SIGCOMM 15, pages 139-152, New York, NY,
USA, 2015. ACM.

[11] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter, J. Carter, and A. Akella.
Ac/dc tep: Virtual congestion control enforcement for datacenter networks.
In Proceedings of the 2016 Conference on ACM SIGCOMM 2016 Confer-
ence, SIGCOMM ’16, pages 244-257, New York, NY, USA, 2016. ACM.

[12] J. Huang, T. He, Y. Huang, and J. Wang. ARS: Cross-layer adaptive request
scheduling to mitigate TCP incast in data center networks. In Proceedings
of the IEEE INFOCOM Conference, pages 1-9. IEEE, apr 2016.

[13] iperf. The TCP/UDP Bandwidth Measurement Tool. https://iperf.fr/.

[14] B. Jenkins. A hash function for hash table lookup.
http://burtleburtle.net/bob/hash/doobs.html.

[15] Jiao Zhang, Fengyuan Ren, Li Tang, and Chuang Lin. Taming TCP incast
throughput collapse in data center networks. In Proceedings of IEEE Inter-
national Conference on Network Protocols (ICNP), pages 1-10. IEEE, oct
2013.

[16] M. H. Jim Keniston, Prasanna S Panchamukhi. Kernel probes (kprobe).
https://www.kernel.org/doc/Documentation/kprobes. txt.

[17] G. Judd. Attaining the promise and avoiding the pitfalls of TCP in the dat-
acenter. In Proceedings of the 12th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2015.

[18] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The nature
of data center traffic. In Proceedings of the ACM SIGCOMM conference on
Internet measurement (IMC), New York, New York, USA, 2009.

[19] Linux Foundation. The Xen Project,leading open source virtualization plat-
form. https://www.xenproject.org.

[20] M. Mattess, R. N. Calheiros, and R. Buyya. Scaling MapReduce Appli-
cations Across Hybrid Clouds to Meet Soft Deadlines. In Proceedings of

35

[21]

[22]

[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]

IEEE 27th International Conference on Advanced Information Networking
and Applications (AINA), 2013.

R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vah-
dat, Y. Wang, D. Wetherall, and D. Zats. Timely: Rtt-based congestion con-
trol for the datacenter. In Proceedings of the ACM SIGCOMM, SIGCOMM
"15, pages 537-550, New York, NY, USA, 2015. ACM.

A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Igbal, and
B. Khan. Minimizing flow completion times in data centers. In Proceedings
of the IEEE INFOCOM Conference, pages 2157-2165. IEEE, apr 2013.

N. Dukkipati, N. Cardwell, Y. Cheng, M. Mathis. Tail loss probe (tlp): An
algorithm for fast recovery of tail losses. https://tools.ietf.org/html/draft-
dukkipati-tcpm-tcp-loss-probe-01.

NetFilter.org. NetFilter Packet Filtering Framework for linux.
http://www.netfilter.org/.

netfpga.org. NetFPGA 1G Specifications. http://netfpga.org/1G_specs.html.
NS2. The network simulator ns-2 project. http://www.isi.edu/nsnam/ns.

V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s Retrans-
mission Timer, 2011. https://tools.ietf.org/html/rfc6298.

a. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger,
G. a. Gibson, and S. Seshan. Measurement and analysis of TCP throughput
collapse in cluster-based storage systems. In Proceedings of the 6th Usenix
Conference on File and Storage Technologies (Fast), 2008.

S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. K. Ouster-
hout. It’s Time for Low Latency. In Proceedings of 13th Workshop on Hot
Topics in Operating Systems (HotOS), pages 1-5, 2011.

S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. Tcp congestion
control with a misbehaving receiver. SIGCOMM Computer Communication
Review (CCR), 29(5):71-78, Oct. 1999.

S. Shukla, S. Chan, A. S.-W. Tam, A. Gupta, Y. Xu, and H. J. Chao. TCP
PLATO: Packet Labelling to Alleviate Time-Out. /IEEE Journal on Selected
Areas in Communications, 32(1):65-76, jan 2014.

36

[32]
[33]

[34]

[35]

[36]

[37]

tcpdump.org. Tcp dump. http://www.tcpdump.org.

V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and B. Mueller. Safe and effective fine-grained TCP
retransmissions for datacenter communication. ACM SIGCOMM Computer
Communication Review, 39:303, 2009.

G. Wang and T. S. E. Ng. The impact of virtualization on network perfor-
mance of amazon EC2 data center . In Proceedings of the IEEE INFOCOM
Conference, pages 1163—-1171. IEEE Xplore, 2010.

H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast congestion control
for TCP in data-center networks. IEEE/ACM Transactions on Networking,
21:345-358, 2013.

J. Zhang, F. Ren, L. Tang, and C. Lin. Modeling and Solving TCP Incast
Problem in Data Center Networks. IEEE Transactions on Parallel and Dis-
tributed Systems, 26(2):478-491, feb 2015.

Y. Zhang and N. Duffield. On the constancy of internet path properties. In
Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement
(IMC), IMW 01, pages 197-211, New York, NY, USA, 2001. ACM.

37

Algorithm 1: T-RACKSs Packet Processing

1
2
3
4

DR CHE S N SV |

11
12

13
14
15

16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

/* Initialization */
Create flow cache pool;
Create flow table and reset flow information;
Initialize and insert NetFilter hooks;
Input: o # of RTTs to wait before retransmitting ACKs
Input: y the threshold in bytes to stop tracking flows
Input: ¢ the dupACK threshold used by TCP flows
Input: ¢: the current local time counted in jiffies
Define x: the exponential backoff counter
B =axRTT +rand(RTT);
Function Outgoing Packet Event Handler (Packet P)
f=Hash(P);
if SYN(P) or f.inactive then
Reset Flow (f);
Extract TCP options (i.e, TStamp, SACK and so on);
Update the flow information and flag entry as active;

if DATA(P) then
Update flow info (i.e, last seqno, .., etc);
B f.active(t)=t;

Function Incoming Packet Event Handler (Packet P)

/* For ACK pkts: extract and update flow
information using ACK headers */

if ACK _bit _set(P) then

f=Hash(P);

if felephant then return ;

Extract required TCP header values ACK-seq, .. ,etc;

if New ACK then

Update flow entry and state information;

Update the last seen new ACK from receiver;

Reset f.dupack = 0;

Reset f.ACK (1) =t;

if f.lastackno > y then f.elephant = true ;

else

if Duplicate ACK then
f.dupack = f.dupack + 1;
/* Drop extra dup—-ACKs in T-RACKs mode */
if f.resent > 0 then Drop Dup ACK ;

Update the TCP headers (if necessary, Timestamps and SACK
information;

L 38

Algorithm 2: T-RACKSs Timeout Handler

/* Initialization
Create and initialize a timer to trigger every 1 ms;
Function Timer Expiry Event Handler

1
2
3
4 for Flow (f) € FlowTable do
5 if | f.Active or f.elephant then Continue ;
6 T = MAX(f.ACK(t), f.active(t));
7 if (r—T)>p then
8 resend last ACK (¢ — f.dupack) times;
9 set f.resent(t) =t;
10 setx =2;
11 Continue;
12 if (1 — f.resent(t)) > (B < x) then
13 resend ACK one more time;
14 x=x+1;
15 Continue;
16 if (r — f.ACK(t)) > TCPMinRT O then
17 stop RACK recovery;
18 soft reset flow (f) recovery state;
19 Continue;
20 if (1 — f.active(t)) > 1 then deactive_flow(f) ;

39

45

40

35

30

25

Average FCT in (ms)

20

15 1 1 1 1 1
30 40 50 60 70 80 90
Network load

RTT == 10RTT == 100RTT
SRTT =) 50RTT 4=~

(a) Small flows: Average FCT using
DropTail

Average FCT in (ms)

60 1 1 1 1 1
30 40 50 60 70 80 90

Network load
RTT =f= 10RTT =&~ 100RTT
SRTT =) 50RTT 4=~

(¢) Small flows: Average FCT using RED

120 T T T T T

110

100

90

80

Average FCT in (ms)

70

60

50 1 1 1 1 1
30 40 50 60 70 80 90
Network load

RTT == 10RTT == 100RTT
SRTT = 50RTT 4=~

(e) Small flows: Average FCT using
DCTCP

Average FCT in (ms)

94 1 1 1 1 1
30 40 50 60 70 80 90

Network load
RTT =f= 10RTT == 100RTT
SRTT =)= 50RTT 4=

(b) All flows: Average FCT using DropTail

170

165
160
155
150
145
140

Average FCT in (ms)

135

130

125 1 1 1 1 1
30 40 50 60 70 80 90

Network load
RTT == 10RTT =¥~ 100RTT
SRTT = 50RTT 4=~

(d) All flows: Average FCT using RED

112

110
108
106
104
102

100

Average FCT in (ms)

98
96

94 1 1 1 1 1
30 40 50 60 70 80 90

Network load
RTT =f= 10RTT == 100RTT

SRTT 96 5ORTT 4
(f) All flows: Average FCT using DCTCP

Figure 14: Average FCT for small flows and all (small, medium and large) flows when
Q is varied in range [1, 100] for different AQMs (i.e., DropTail, RED and

DCTCP)

Rack 1 Rack 2 Rack 3 Rack 4 - ‘
(a) The testbed topology (b) The actual testbed

Figure 15: Testbed setup of T-RACKSs in small-scale cluster

41

Average FCT with Errorbars (ms)

Re, Ao Q. Cp. O O
o g, %/'c "6/% QCp C’C,o
4 3y

Gk G Q*?Q‘,
Scheme

(a) Small Flows: Average
with Errorbar

Average FCT with Errorbars (ms)

R, Re. Qi Qi Opy O
G”o 6’70»,94%/(‘ Ub"c (O (‘)CA

G
Cr 4(\4’,0 '?40r
Scheme
(d) Small Flows: Average
(Datamining)

200m:

I

A

)

<

5

[}

[7)

T

ke

[0)

8

2

n

g

s

w

5 Ry Ay G Q. Oy O

% @"0 s”o‘ﬁ,:b/c l/(,/.(\"q(‘) G C}(‘p /?4

> 3
C G o
Scheme
(b) Small Flows: Missed
Deadlines

2.5 T T T T T

Average FCT with Errorbars (ms)

Op,. O,
e %z
Gk quf

Cu. G
%’70 %”o\ﬁ, Y %"c,?
40(4

Scheme

(e) Small Flows: Average
(Educational)

Average FCT with Errorbars (ms)

Q. Q. Opy. O

'?@,]O 'Qe,lowl/b o Yo "cﬁ,q‘(‘p Q-Cp
4(‘,(* 4(‘4— '%q(‘/r
Scheme

(¢) All Flows: Average
with Errorbar

Average FCT with Errorbars (ms)

C, CQ Op, O
ﬁ’e,,o %’70\,94%/0 Uy, n C}Cp\

o
Cr 404’,0 '?4(}
Scheme
(f) Small Flows: Average
(Private DC)

Figure 16: Performance Metrics of all-to-all scenario without any background traffic

42

Average FCT with Errorbars (ms)

’?@/70 4’9’70\ Q/b/'(, Q’é/‘(\;)Q‘CpOC)‘Cp
Cf 4(‘4» %Qr
Scheme

(a) Small Flows: Average
with Errorbar

250

200 1

Average FCT with Errorbars (ms)

R, Re Cui. Cup. O
o g, iy O, 0y
0 0\194 (e /(14, Co 'Cp,

Cr 4(‘4’ '?40r
Scheme
(d) Small Flows: Average
(Datamining)

200m:

I

A

)

£

5

o

[9)

T

ke

[0)

8

2

n

2

o

w

5 Ry Ay Cp Q. O O
K @'70‘4,:6/% %"cﬁc} G QCQ

G 4(‘4» '?‘qq,
Scheme
(b) Small Flows: Missed
Deadlines

Average FCT with Errorbars (ms)

Re, R, Q. Q. 0o O
6)’70 G'IQ " [lé"(‘ [/b/(\ 2 QCD C)‘CA
4(}

4(} '94(}
Scheme
(e) Small Flows: Average
(Educational)

1400
1200 b
1000 b

Average FCT with Errorbars (ms)

Q. Q. Oy, O,

oy g 4,%/'(“, ,907(% R
4(‘,(' 4(} %Qr
Scheme

(¢) All Flows: Average
with Errorbar

Average FCT with Errorbars (ms)

R R Q, CQu O O
% o, % %fc,?%p Cr%

Gk 404— 40(
Scheme

(f) Small Flows: Average
(Private DC)

Figure 17: Performance metrics of one-to-all scenario with background traffic

43

250 12

Average FCT with Errorbars (ms)
Average FCT with Errorbars (ms)
Average FCT with Errorbars (ms)

0 0
oy o . U, o, 0 Fony e, 10 U 20, Fon "oro 15 s o,
’94(} 4)4(‘,‘, \'?4(} %C/r 404’ \'?4(‘4' 94(} 440(%)40(
Scheme Scheme Scheme
(a) Small Flows: Average (b) Small Flows: Average (¢) Small Flows: Average
(Datamining) (Educational) (Private DC)

Figure 18: Performance metrics of all-to-all scenario for datamining, educational and
private DC workloads

44

	Introduction
	Background and Problem Statement
	TCP Retransmission Timeout
	RTT Inflation by Virtualization
	Empirical Analysis of RTO
	Empirical Analysis of Virtualization Delays

	The Proposed Methodology
	System Design and Algorithms
	Practical Aspects of T-RACKs System

	Simulation Analysis
	Single-Rooted Tree Topology
	Large-Scale DataCenter Topology
	Sensitivity to Choice of T-RACKs RTO Timer

	Implementation and Experiments
	Datacenter Workloads based Experimental Results

	Related Work
	Report Summary
	References

