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Abstract

n this report, we empirically and analytically study TCP packet loss cy-
cles which greatly affect the performance of TCP applications. Specifically,
the short cycles of TCP in data center environments degrade the Flow Com-
pletion Time (FCT) of most time-sensitive (e.g., partition-aggregate) TCP
applications. In particular, for small flows, short loss cycles may lead to
losses only recoverable by Retransmission-Timeout (RTO) which expands
the FCT by 2-4 orders of magnitude. We find that short loss cycles are
merely the symptom of a pathology of TCP’s AIMD algorithm design tar-
geting moderate-bandwidth high-delay Internet and is shown to be inade-
quate for the high-bandwidth low-delay data centers. Hence, the common
sense calls for an alternative methodology that can effectively expand the
TCP loss cycle long enough for short flows to finish the transfer within one
or fewer RTTs. To this end, in this report, we propose a switch-based con-
trol which synthesizes Hysteresis Switching Congestion Control (HSCC).
HSCC switches between TCP and a slow CBR in order to expand the TCP
loss cycle within data centers. The proposed scheme is studied analytically
then it is evaluated via means of small and large scale NS2 simulation and
real experimentation in a real testbed cluster. The results show consider-
able improvements in the FCT distribution and the missed deadlines. HSCC
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achieve this without modifying or interfering with the VM’s TCP implemen-
tation or configuration. This makes the scheme very appealing for deploy-
ment in public data centers.

1 Introduction
We have shown that TCP is still the dominant transport protocol in use by most
cloud application. TCP is a distributed end-to-end protocol that relies on a collec-
tions of algorithms to achieve reliable and effective communication. Mostly, these
algorithms were not part of the initial incarnation of TCP and they were added
gradually to parallel the evolution of the Internet. Therefore it is not surprising that
most TCP implementations found in the most popular operating systems today are
by default fine-tuned to be efficient in the Internet. In particular, one algorithm that
affects the performance of the applications dramatically is the TCP congestion
control mechanism: over the years numerous variants of the TCP congestion con-
trol mechanism have seen the light, mostly to meet the ever evolving design goals
and operational requirements of new operating environments [11, 7, 13, 30, 28].
To name a few examples, TCP Westwood [7] was proposed to improve TCP per-
formance in lossy wireless networks, Cubic TCP was designed to take advantage
of high-speed long-distance networks and Fast TCP [30] is a delay-based variant
designed to improves TCP throughput over high-speed long-distance networks.

In the same spirit, small short-lived flows are observed to experience unneces-
sarily long FCT in data centers with vanilla-TCP. As a result several new variants
of TCP congestion control have been proposed to improve the performance of
TCP in data center networks (e.g., DCTCP [1, 2], TIMELY [25]). In contrast,
other studies simply identified the sources of performance degradation in data
centers with vanilla-TCP and proposed tuning congestion control parameters to
match the scale of data center networks (e.g., reducing the initial congestion win-
dow to cope with the small switch buffers [23] or scaling down the minimum
retransmission timeout to match the small RTT of a data center [29]). All these
approaches have been shown to yield some performance improvements, and some
are already in use in production data centers. However, we see these solutions as
only applicable to private data centers where the operator has control over both
ends of the internal TCP connections. Several works have investigated switch-
based congestion control means to improve the FCT of short-lived flows. For
example, pFabirc [3] and PIAS [4] leverage priority queuing in the switches to
segregate and serve short-lived flows before long-lived ones. These mechanisms
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also apply exclusively to privately owned data centers as they require modifica-
tions of the TCP stack of the end-system or the guest VM (e.g., PIAS relies on
DCTCP and pFabric relies on a modified version of TCP).

In public, multi-tenanted, datacenters, the tenants lease and share a common
physical infrastructure to run their applications on virtual machines (VMs). The
tenants can implement and deploy their preferred version of TCP and thus of con-
gestion control algorithm. However, the operators have no control over the guest
operating system nor the TCP variant running in the guest VMs. To tackle this
issue, few approaches have been proposed in the literature. First, the public data-
center operator can statically apportion the network bandwidth among the tenants,
giving each of them a fixed allocation with guaranteed bounds on delays [26, 32].
This technique though effective, would not benefit from the statistical multiplex-
ing resulting in an ineffectively unused admissible region. Another approach sug-
gests modifing all the switches in the datacenter to ensure small buffer occupan-
cies at each switch. This can be achieved by leveraging separate weighted queues
and/or applying various marking thresholds within the same queue [21, 27, 5].
Typically, each source algorithm requires a certain weight/threshold to fully uti-
lize the bandwidth. Hence, such schemes are not scalable, may lead to starvation
and are hard to deploy due to the increasing number of different congestion control
algorithms employed by the tenants.

To enable true deployment potential in such heterogeneous TCP environment
without modifying TCP, in this report, we again adopt a switch-based approach.
However, to make our scheme agnostic to the nature of the congestion control
mechanism employed by the tenant, we rely on a standard universally adopted
TCP mechanism to convey congestion signals to the sources. The sources become
simple flow rate controllers during congestion while the switches set the source
rates during these periods. This approach enables the data center operators to
innovate in the switch without paying attention to the TCP variants running in the
guest VMs.

In the remainder of this report, we study empirically the impact of TCP RTO
on the performance of TCP and then show the relation between the RTO and
the TCP cycles in Section 2. The proposed solution, system modeling, design
and practical aspects are discussed in Section 3. In Section 5, we present our
simulation results in detail. Then, in section 6, we discuss our implementation
details and show experimental results from a real deployment in a small-scale
testbed. We discuss important related work in Section 7. We finally conclude the
report in 8.

For the purposes of reproducibility and openness, we make the code and
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scripts of our simulations, implementations and experiments available online at
http://github.com/ahmedcs/HSCC.

2 Background and Problem Statement

2.1 Timeout Reflection on the FCT
Short-lived flows in data centers face the challenge of operating in small buffered
environments while TCP uses inadequate Internet-suited mechanisms such as large
initial window, long minRTOs and/or slow-start exponential growth. This inap-
propriate and composite nature of hardware and TCP configurations frequently
leads to devastating timeout events for small flows. In particular, when the num-
ber (N) of such flows increases, in the presence of small buffers, they turn out to
experience synchronized losses (the so-called TCP incast congestion). Knowing
that the loss probability grows linearly with N [22], the flow synchronization and
the excessive losses are known to lead to throughput-collapse for small-flows in
data centers. To illustrate this, assume the link capacity C is shared equally among
N flows and let F be the flow size, τ be the mean RTT of the flow and x be the
number of RTTs to complete the transfer. Then the optimal throughput is:

ρ∗= F
xτ + NF

C
(1)

In practice, when TCP incast congestion involving N flows results in throughput-
collapse, some flows might experience timeouts and have to recover via RTO.
Then the transfer time becomes (RTO + the typical transfer time) and the through-
put ρ becomes:

ρ =
F

RTO+ xτ + NF
C

(2)

In data centers, the typical RTT is around 100µs, while existing TCP imple-
mentations impose a minimum RTO of about 200+ms. For large flows, x is large
and hence RTO and xτ in 2 are comparable. In contrast, for small flows who
only last a few RTTs and hence RTO can be at least 2 orders of magnitude larger
then xτ . As a consequence, if a small flow experiences a loss that cannot be re-
covered by 3-DUPACKs (called hereafter a Non-Recoverable Loss or NRL), then
it has a high chance of missing for example the service level agreement on the
deadlines (e.g., ≈100ms). Hence, to improve the performance of small flows we
recommend curbing NRLs as much as possible.
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2.2 Measurement-Based Verification
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(d) FCT exceeding 200ms

Figure 1: An experiment to characterize TCP flows and evaluate the effects of RTO on
FCT in websearch and datamining workloads.

To support this analysis, we conduct experiments in a small-scale testbed to
study the frequency of timeouts in high-bandwidth low-delay environments. We
reproduce traffic workloads found in public and private data centers, we built a
custom TCP traffic generator. The traffic generator establishes TCP connections
to mimic flows with sizes and inter-arrival time distributions drawn from vari-
ous realistic workloads (e.g., websearch [1] and datamining [12] (as well as oth-
ers [18, 6]). Then, to track the nature of losses, we collect TCP socket-level events
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(e.g., timeouts) via a custom-built Linux kernel module that leverages kernel prob-
ing functions (jprobe [17]) and dumps the socket state-variables of interest. The
module installs probe objects in each traced TCP function. In our experiments,
the probed TCP function is the tcp retransmit skb which is called whenever seg-
ments are transmitted by TCP. To conduct the experiment, the end-hosts are in-
strumented with the probe module and a total of 7000 flows are generated. Flows
are categorized into small (≤ 1MB), medium (1−10MB) and large (≥ 10MB).

Figure 1a shows the percentage of flows generated from each size while Fig-
ure 1b shows the percentage of network bytes generated from each size. We ob-
serve that, in websearch and datamining workloads, most flows are small and
websearch data bytes are distributed almost uniformly over the three categories.
However, in datamining case, most of the bytes are produced by large flows (i.e.,
these flows tend to be quite large in size). Figure 1c shows the RTO frequency
for sequences observed in each category and suggests that RTO is highly likely
for all flow types in both workloads. Noticeably, in a websearch workload, RTOs
of small flows are (2563 ≈ 35%). Figure 1d shows flows exceeding 200ms are
(≈ 28%,≈ 18%) for small flows.

As an example, assume on average the small flow size is B=500KB and on av-
erage 36 flows [1] share the bottleneck link capacity of C=1Gbps equally. Then,
such a flow should finish its transmission in ≈ 17 RTTs and the FCT would be
(= B

C +17100µs = 500KB
1Gbps/(8∗36) +1.7ms ≈ 150ms). According to Figure 1, flows

on average would experience 1/2 RTO in websearch (2 in datamining). Then
this translates to adding another ≥ 100ms (≥ 400ms) to the FCT (i.e., more than
66%(366%) the ideal FCT for websearch (datamining), respectively. These re-
sults show the effect of RTOs on small flows with few segments to send.

The measurements strongly suggest that RTO frequency is non-negligible in
data centers for which we suspect that the short TCP loss cycle is to be blamed. In
the next section, we analytically explore the anatomy of this problem then propose
a possible solution for it.

3 The Proposed Methodology
In this section, we explore the anatomy of the problems discussed previously.

TCP flows start in an exponential increase phase and then enter into Conges-
tion Avoidance (CA). TCP CA is the one that determines the steady-state dy-
namics of TCP when packet losses are moderate. CA algorithm employs two
strategies namely the Additive Increase (AI) and Multiplicative Decrease (MD).
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Figure 2: TCP with DropTail vs TCP with Hystersis-based AQM. Both graphs show the
period and the number of MSS sent within each TCP loss cycle.

AI increases the congestion window by a constant amount (typically, 1 Maximum
Segment Size or MSS) in each Round-Trip Time (RTT) upon successful reception
of ACKs (i.e., no losses or congestion signals within the current congestion win-
dow)1. MD decreases the congestion window by a constant multiplicative factor
upon arrival of loss or congestion signal2.

In CA, TCP congestion window Cwndproceeds in a periodic sawtooth shape
as shown in part A of Figure 2. The typical behavior of CA AIMD algorithm en-
sures Cwndattain values between the maximum Cwnd(w) and its minimum value
(or equilibrium point w

2 ) [22]. The figure also shows that receiver window Rwndis
always (or almost) constant because receivers allocate large and enough buffers.
The sending window Swndis shown to take the minimum of the congestion win-
dow Cwndand the receiver window Rwnd. Typically because of the small RTT
in data centers, Rwnd> Cwndand the throughput of TCP can be shown to be in-

1Typically, in real OS implementations like Linux, this is achieved by counting the number of
returned ACKs within 1 RTT and opening the congestion window by 1 MSS at the end of the RTT.
This can be approximated by a linear increase of small increments ( 1

Cwnd ) for each ACK
2Note that, TCP reacts once per RTT for all congestion signals (i.e., N congestion signals do

not cut the window N times but only once).
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versely proportional to the square root of the loss event probability [22]. As such,
because in data centers losses are frequent, the loss cycle turns out to be very short.
This problem is found in window-based TCP (e.g., RENO, CUBIC, DCTCP) that
rely on loss/congestion signals to adjust their sending rates.

3.1 A Control Theoretic Solution
To increase TCP throughput one needs to stretch the loss cycle. In addition, to
discriminate favorably short-lived incast traffic our mechanism makes room for
such flows when they are most likely to experience non-recoverable losses, i.e.,
when the buffer backlog builds up.

Figure 2(A) shows Cwnd, Rwndand Swndof TCP cycles with periods where
Cwndis inactive. In each cycle, Cwndbecomes inactive for a certain time and
Rwndtakes over the control of Swnd. During this period, Rwndis set to a slow rate
for until Cwndis reactivated again. In the following, we derive an expression of
the data workload transferred in the new loss cycle. While Figure 2(B) shows that
Cwndopens up by 1 MSS in each RTT until wα2 is obtained. It takes Tα2 =wα2− w

2
RTTs to go from w

2 to wα2 . The amount of data transferred within this period is
the area under that part which can be expressed as:

Dα2 = Tα2

w
2
+

Tα2

2
(wα2−

w
2
) =

w2

8
wα2

2

2
, (3)

Now the amount of data D transferred within each CBR mode period Ti,CBR is
the area under the rectangle (i.e., Di,CBR = 1×Ti,CBR). The data transferred within
each activation of AI mode for a period of one RTT in the round i can calculated as
D(i,AI) = wα2 + i. To find the total amount of data transferred until Cwndreaches
the maximum of w, we sum up these terms:

DNew = Dα2 +

w−wα2

∑
i=1

Di,CBR +Di,AI

=
w2

8
wα2

2

2
+

w−wα2

∑
i=1

(Ti +wα2 + i),

(4)

The summation term of the right hand side is an arithmetic series, hence the
value of the data transferred can be simplified:

DNew = DTCP +

w−wα2

∑
i=1

Ti, (5)
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Figure 2 shows an explanation of the targeted TCP behavior where TCP loss
cycle is expanded to cover more RTT rounds. In this case, we assume that TCP
can alternate between two sending rates where one is governed by the typical
AIMD and the other one is a Constant Bit Rate (CBR) operating at a slow rate of
1 MSS/RT T . As shown in Figure 2, the resulting behavior within 1 loss cycle in
CA mode is:

1. TCP start ramping up in the AI mode until a certain congestion window wα2

is reached based on signals coming from the bottleneck switch.
2. When Cwndhits the wα2 mark, TCP switches to the slow CBR mode sending

at rate 1 MSS/RT T until another signal from the switch comes that lets TCP
resume TCP AI.

3. Afterwards, TCP will operate in AI mode for a single RTT before switching
back to the slow CBR mode, this is mainly due to the discrete nature of TCP
senders.

4. This cycle of switching back and forth between AI and slow CBR continues
for a few rounds until the Cwndreaches or exceeds the maximum congestion
window w.

5. Then packet loss occurs and MD is applied to restart a new stretched loss
cycle.

A toy scenario involving incast event: Figure 3 shows a toy scenario where
TCP flow is forced to shares the network with new incoming 5 incast TCP flows.
The TCP flow is assumed to be in its steady state (i.e., the maximum w is the
value that leads to buffer overflow). Initial congestion window is assumed to be
1 MSS. In Figure 3(A), at time T, 5 flows arrive each with 1 MSS. However, the
current TCP flow would continue with its CA and the current sending window is
w− 1. Then, there is room for 1 MSS to be filled by 1 new flow and the other 4
would experience losses. On the other hand, Figure 3(B) shows that. at time T,
the hysteresis switch would be active and the current sending window is 1 MSS.
Then, clearly there would be room for 1 MSS from each flow including the 5 new
arrivals and no flow would experience losses. The performance gains are obvious
in terms of the completion time for incast flows.

3.2 HSCC System Modeling
HSCC system control loop is depicted in Figure 4a, the system consists of four
main components namely three data sources, the queue and a hysteresis controller
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introduced by the incast traffic.

that switches among the three data sources. These include a TCP Additive in-
crease source with 1 MSS/RTT increase rate, a CBR source sending at 1 MSS/RTT
and a CBR+ source that combines the CBR source of 1 MSS/RTT and a Multi-
plicative Decrease on the congestion window. Figure 4b shows the switching
control law used by the HSCC switch, it is a Counter-Clockwise (CC) hysteresis
system. In CC hysteresis, the switching happens first when the high threshold α2
is crossed and the state continues until the lower threshold α1 is crossed. The
possible sequence of switching is as follows: i) while using TCP source send-
ing at rate λ1 and the high threshold α2 is hit then the controller switches to the
lower rate CBR source with rate λ2; ii) The system keeps operating in this CBR
mode with rate λ2 until the lower threshold L is hit at which point the controller
switches to TCP source to recover the sending rate λ1; iii) There is the special
case of switching in dynamics whenever the queue exceeds the buffer space (i.e.,
M) leading to the loss of packets. In such case, the system switches to a third
system CBR+ sending at rate λ2 as well as applying multiplicative decreasing the
rate λ1 (i.e., TCP congestion window) before crossing back the lower threshold
iv) otherwise, the system stays in the current state.
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Figure5 shows the transition diagram of TCP-HSCC system states. It is clear
that there is a singularity in the congestion window value after 1 RTT from loss
event which is cut by half. These events are caused by the queue length exceeding
the buffer size q >= M as shown in the diagram. However, in loss events, the
HSCC control law will immediately switch to the CBR source (i.e., CBR+ in
Figure 4). Then, it is clear that from the transition diagram that we are operating
with CBR until the queue falls back to the low threshold which reactive TCP
source again. This means there is a time-period in which the new congestion
window w

2 is inactive (i.e., the period needed for the queue to drain from being
full back to the low threshold).

3.3 HSCC Switch System Design
Figure 6 shows the HSCC system components and operations. First, at connection-
setup, flows are hashed into a hash-table with the flow’s 4-tuples (i.e., source IP,
dest. IP, source port and dest. port) used as the key and the window scale factor
used as the value. Flow entries are cleared from the table when a connection is
closed (i.e., FIN is sent out). The module writes the scale factor for all outgoing
ACK packets in the 4-bit reserved field of TCP headers (alternatively, by using
4-bits of the receive window field and using the remaining 12 bits for window
values). The used reserved bits is cleared after their usage by the HSCC switch
to avoid packet being dropped by destination due to invalid TCP check-sum value
which avoids the need for recalculating TCP checksum at the end-host and the
switch. As shown in Figure 6, the module resides right above the NIC driver for
a non-virtualized setups and right below the hypervisor to support VMs in cloud
datacenters. Hence, this placement does not touch any network stack implemen-
tation of host or guest OS, making it readily deployable in production datacen-
ters. The end-host module tracks the scaling factor used by local communicating
end-points and explicitly append this information only to outgoing ACKs of the
corresponding flow. The switch whenever it detects the onset of possible incast
event for one of the ports, it immediately switches to incast mode and will start
window updates in the incoming ACKs.

Control Packets Loss: TCP packets are lost if the data or its corresponding
ACK is lost and connections cannot be opened/closed if the SYN/FIN segments
are lost. Hence, if Rwndis set to small values such as 1 MSS, then an ACK
segment loss can lead to timeouts. To address this issue, HSCC may leave room
in the buffer for any control packets (e.g., SYN, FIN, ACK and so on) to safeguard
them from possible losses. In our design, we set another drop point σ on all switch
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queues below the size of the buffer. σ is set to reserve a small amount of buffer
(e.g., ≈3%) for different control packets like pure ACK packets. If ACKs are
piggy-packed, then similar to [10], the switch can cut the payload and forward
only the ACK. The evaluation of these tweaks is left for future work.

Receive Window Scaling: HSCC relies on a scale factor to rescale the mod-
ified window written into TCP header of incoming ACKs. TCP specification [16]
states that the three-byte scale option may be sent in all packets or only in a SYN
segment by each TCP end-point to let its peer know what factor it uses for its
own window value scaling. TCP implementations in most popular Operating Sys-
tems including linux adopt the latter approach to save overhead and wasted band-
width of the former approach. The scaling may be unnecessary for networks with
Bandwidth-Delay Product (BDP) of 12.5KB (i.e., C=1 Gbps and RTT≈ 100µs).
However, with the adoption of high speed links of 10 Gbps (i.e., BDP=125KB),
40 Gbps (i.e., BDP=500KB) and 100 Gbps (i.e., BDP=1.25MB), the scaling fac-
tor becomes necessary to utilize the bandwidth effectively. This applies to cases
when there are less than 2 (for 10Gbps), 8 (for 40Gbps) and 20 (for 100Gbps)
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active flows. Even though, the probability of having such small number of active
flows in data centers are extremely small [1]. HSCC should be designed to handle
window scaling via flow-level tracking at the switch. However, this would make
HSCC undesirable and hence we propose a light-weight end-host shim-layer to
explicitly send scaling factor with outgoing ACKs. The shim-layer extracts and
stores from outgoing SYN and SYN-ACK packets the advertised scaling factor
(i.e., within the window scaling option) for each established TCP flow. The shim-
layer encodes the scale factor using 4 of the 8 reserved bits of TCP header. Then,
the switch uses this value to scale the new window properly and then clear the
reserved bits. In ethernet networks, IP checksum is not checked by forwarding
devices and checked at the receiver IP layer. So by clearing the reserved bits,
computation of new IP checksum is avoided both at the shim-layer and the switch.

4 Mathematical Modeling and Stability
In this section, we will drive the stability analysis using the standard fluid model-
ing and linearization methods.

Figure 5 shows the state transitions in TCP-HSCC where the control switches
between two systems namely AIMD of TCP and slow CBR when HSCC is ac-
tively rewriting Rwnd. We model TCP-HSCC behavior, three decoupled sets of
differential equations representing the dynamics each system. We follow same
modeling procedure in [24, 14]. In our model, we assume a finite buffering capac-
ity M, the RTT differences among competing flows are negligible, packets size P
is constant and sources have constant supply of data (i.e., long-lived flows). Note
that, mice flows are considered as a temporal low-frequency disturbance/noise
imposed on the system and absorbed by the system dynamics. The RTT for a
packet P with bottleneck link capacity of C is τi(t) = Tc +Tt +Tp +

qi(t)
C , where

Tt =
size(P)

C is the transmission time, Tp is the propagation delay, Tc is the pro-
cessing delays on the path and qi(t)

C is the queueing delay seen by flow i. Let
Pl ∈ [0,1] be the drop probability triggering 3-DUPACK recovery and Pu ∈ [0,1
be the Rwndupdate probability when hysteresis switch is ON (i.e., CBR is active).
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The differential equations of TCP AIMD is:

dw(t)
dt

=

(
1−Pu(t− τi(t))

τi(t)
− wi(t)Pl(t− τi(t))

2

)
w(t− τ(t))
τ(t− τ(t))

,

dq(t)
dt

= (1−Pu(t− τi(t))
∑wi(t)

τi(t)
−C,

(6)

Then, the equations in CBR mode can be written as:

dw(t)
dt

=

(
Pu(t− τi(t))

wi(t)τi(t)

)
wi(t− τi(t))
τi(t− τi(t))

,

dq(t)
dt

= Pu(t− τi(t))
∑1
τi(t)

−C,

(7)

In the above formulations, wi(t) and τi(t) should converge in steady state for
the competing TCP flows due to the negligible RTT difference assumption. N
is considered the long-run average of the number of TCP flows contributing the
most to the queue (i.e., elephants). It is intuitive to assume that the queue length q
and window size w variables are positive and bounded. Then, queue and window
size are assumed to in q ∈ [0,M] and w ∈ [0,Wmax] where M is the buffer size
and Wmax is the maximum window, respectively. To perform the stability analysis
the non-linear system of equations is linearized around operating point using the
linearization methods in [19, 14]. The combined differential equations regulating
the whole TCP-HSCC system dynamics can be formulated as follows:

dw(t)
dt

=

(
1−Pu(t− τ(t))

τ(t)
+

Pu(t− τ(t)
w(t)τ(t)

− w(t)Pl(t− τ(t)
2

)
w(t− τ(t))
τ(t− τ(t))

,

dq(t)
dt

= (1−Pu(t− τ(t))N
w(t)
τ(t)

+Pu(t− τ(t))N
1

τ(t)
−C.

(8)

4.1 Linearization of Non-Linear Fluid Model
In the system of equations (8), the system state is defined by the pair (w(t),q(t))
and has two inputs (Pl,Pu). Since by definition of the FIFO queue, it is straight-
forward to notice that if α2 ≤ M and let P = Pu then P ≥ Pl and Pl = κP and
where κ ∈ [0,1]. κ = is a positive scalar representing the number of queue pas-
sages over the high threshold α2 before a single buffer overflow. Since after every
passage through the high α2 threshold, when the TCP mode becomes active the
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window increases by 1 MSS per flow and if N is given then κ can be calculated.
Hence, κ is the number of packets between the high threshold α2M and the full
buffer M divided by the number of flows N (i.e., κ = (1−α2)M

N ). The operating
point is when the system dynamics comes to rest (i.e., at equilibrium point de-
fined by (w0,q0,Pu0 = P0,Pl0 = κP0). Hence, the equilibrium points can be found
by solving Equations (8) for dw

dt = 0 and dq
dt = 0 as follows:

dw
dt

=

(
1−P0

τ0
+

P0

w0τ0
− w0κP0

2

)
w0

τ0
= 0

0 =
1
τ0
−
(

P0

τ0
− P0

w0τ0
+

w0κP0

2

)
1
τ0

=

(
1− 1

w0
+

κw0τ0

2

)
P0

τ0

P0 =

(
κw0τ0

2
− 1

w0
+1
)−1

(9)

dq
dt

=
Nw0

τ0
(1−P0)+

N
τ0

P0−C = 0,

Cτ0

N
= (1−P0)w0−P0→ w0 =

Cτ0/N−P0

1−P0

(10)

To sum up, the equilibrium points P0 and w0 are defined as follows:

dw(t)
dt

= 0 → P0 =

(
κw0τ0

2
− 1

w0
+1
)−1

dq(t)
dt

= 0 → w0 =
Cτ0/N−P0

1−P0
,

where τ0 =
q0

C
+T.

(11)

We use the obtained equilibrium points, then we define the perturbed variables
as δw = w−w0, δq = q− q0 and the perturbed system input δPu = Pu− Pu0.
From Equation 8, we define two functions F(w(t),w(t−τ),q(t),q(t−τ),Pu(t−τ)
and G(w(t),q(t),q(t− τ),Pu(t− τ). To linearize the system around the perturbed
variables we need to find the partial derivatives of F and G with respect to each of
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their parameters and substituting the equilibrium points for the values as follows:

F(w(t),w(t− τ),q(t),q(t− τ),P(t− τ)) =(
(1−P(t− τ))

q(t)
C +T

+
P(t− τ)

w(t)(q(t)
C +T )

− w(t)κP(t− τ)

2

)
w(t− τ)

q(t−τ)
C +T

G(w(t),q(t),P(t− τ)) = (1−P(t− τ))
Nw(t)

q(t)
C +T

+P(t− τ(t))
N

q(t)
C +T

−C.

(12)
We first find the partial derivative of F with respect to w(t):

δF
δw(t)

= δ

(
(1−P(t−τ))

τ(t) + P(t−τ)
w(t)τ(t) −

w(t)κP(t−τ)
2

)
w(t−τ)
τ(t−τ)

δw(t)
,

δF
δw(t)

=

(
−P(t− τ(t))

w(t)2τ(t)
− κP(t− τ)

2

)
w(t− τ)

τ(t− τ)
,

δF
δw(t)

|w0,τ0,P0 =

(
− P0

w2
0τ0
− κP0

2

)
w0

τ0
=−P0

τ0

(
1

w0τ0
+

κw0

2

) (13)

Then, we first find the partial derivative of F with respect to w(t− τ):

δF
δw(t− τ)

= δ

(
1−P(t−τ(t))

τ(t) + P(t−τ(t)
w(t)τ(t) −

w(t)κP(t−τ(t)
2

)
w(t−τ(t)
τ(t−τ)

δw(t− τ)
,

δF
δw(t− τ)

=

(
1−P(t− τ(t))

τ(t)
+

P(t− τ(t)
w(t)τ(t)

− w(t)κP(t− τ(t)
2

)
1

τ(t− τ)
,

δF
δw(t− τ)

|w0,τ0,P0 =

(
1−P0

τ0
+

P0

w0τ0
− κP0w0

2

)
1
τ0
,

=
1
τ2

0
− P0

τ2
0

(
1− 1

w0
+

κw0τ0

2

)
=

1
τ2

0
− P0

τ2
0

1
P0

= 0

(14)

Similarly, we derive the remaining variables and they are:

δF
δq(t)

=− P0

Cτ3
0
,

δF
δq(t− τ)

= 0

δF
δP(t− τ)

=− 1
τ0P0

,
δG

δw(t)
= (1−P0)

N
τ0
,

δG
δq(t)

=− 1
τ0
,

δG
δP(t− τ)

=−(C− N
τ0
).

(15)
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Then we can construct the linearized system of equations using the perturba-
tion around the equilibrium point as follows:

δ ẇ(t) =−P0

τ0

(
1

w0τ0
+

κw0

2

)
δw(t)− P0

Cτ3
0

δq(t)− 1
τ0P0

δP(t− τ),

δ q̇(t) = (1−P0)
N
τ0

δw− 1
τ0

δq− (C− N
τ0
)δP(t− τ).

(16)

By taking the Laplace transform of the equations in 16 and drawing the lin-
earized system components in the block form [19], we get the system shown in
Figure 7. Next, we will use the linearized system to derive the stability of TCP-
HSCC system.

s

1

0

1

1


s

3

0

0

C

P


+











2

1 0

000

0 w

w

P 


Queue Dynamics

TCP window Dynamics

0

00

1 



s
e

P


 δP

δw δq

0

N

(a) Linearized TCP-HSCC block diagram






























































0

0

000

0

2

00

1

1

2

1








sw

w

P
s

P

N

3

0

0

C

P


+

0
s

e



δP

δq

Hysteresis
Control Law

Plant

(b) Simplified TCP-HSCC block
diagram

Figure 7: (a) HSCC system components and the feedback loop shows the input δP, the
output δq and the TCP and queue dynamics of the system (b) The simplified
block diagram sums up system components into the Plant which takes δP after
delay as the input and δq as the output
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4.2 Stability Analysis

Let C1= 2P0
τ0

(
1

w0τ0
+ κw0

2

)
, C2= P0

Cτ3
0
, C3=(1−P0)

N
τ0

and C4= 1
τ0

. (C1,C2,C3,C4)

are positive variables. These variables are positive if w0 > 0 and P0 > 0. From
Eq. 11, it is easy to see that w0 > 0 if Cτ0 ≥ N and 0 < P0 < 1. Condition P0 > 0
means 1

w0
< 1 + κw0τ0

2 which is true if w0 ≥ 1. The conditions P0 < 1 is true
if 0 < κw0τ0

2 < 1 and w0 ≥ 1. So the variables C1,C2,C3 and C4 are positive if
Cτ0 ≥ N,w0 ≥ 1 and 0 < κw0τ0 < 2

Let the system of equations in matrix form be Z, the system coefficients matrix
be A and the input coefficients vector be b, then the system can be expressed as:

Z = Ax+by, where

A =

[
−C1 −C2
C3 −C4

]
and x =

[
δw
δq

]
,

b =

[
− 1

τ0P0

−(C− N
τ0
)

]
and y = δ p(t− τ).

(17)

Then, we can find the eigenvalues of A to evaluate system stability. The eigen-
values are:

λ1,2 =−
C1

2
−C4

2
±

√
C2

1−2C1C4 +C2
4−4C2C3

2
.

(18)

In control systems, the system is stable if its dynamics matrix is a Hurwitz
stable. A Hurwitz matrix is a symmetric matrix such that all its eigenvalues lie in
the negative part of the real axis (i.e, the open left of the imaginary axis) [19].

The eigenvalues of Equation 18 (λ1,2) are negative definite if C2
1 − 2C1C4 +

C2
4−4C2C3 <= 0 and hence the system is stable. However, if C1+C4 <

√
C2

1−2C1C4 +C2
4−4C2C3,

one of the eigenvalues is positive and the system becomes unstable. We show that
the latter case is infeasible:

C1 +C4 <
√

C2
1−2C1C4 +C2

4−4C2C3,

(C1 +C4)
2 <C2

1−2C1C4 +C2
4−4C2C3,

C2
1 +2C1C4 +C2

4 <C2
1−2C1C4 +C2

4−4C2C3,

4C1C4 +C2
4 <−4C2C3.

(19)
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Since the condition in the Inequality 19 is infeasible because C1,C2,C3 and C4
are all positive quantities, then the system is considered stable. Given the values of
w0,P0,τ0,C,N,κ , we can verify the stability of the system. We give the following
numerical examples:

• Consider the following network parameter values of a given system, w0 =
10, P0 = 0.5, τ0 = 0.0001, C = 109, N = 25, κ = 0.2. Then, the system
matrix and eigenvalues are:

A =

[
−10000.1 −500

125000 −10000

]
and λ1,2 =−10000.05±7905.7i. (20)

Sine both eigenvalues have a negative real part, the stability of this system
is shown.

• if we set w0 = 2 and N = 1 then the matrix and eigenvalues become:

A =

[
−2000.5 −500

5000 −10000

]
and λ1 =−2326.28,λ2 =−9674.21. (21)

Again both eigenvalues are negative and the stability of the new system is
shown.

The key observation is that TCP-HSCC system stability is inherited from sta-
bility of the original TCP-DropTail system. HSCC mechanism only acts as a tem-
poral interruptions to the original TCP-DropTail controller. These interruptions
are meant to expand its loss cycle period to accommodate more packet transfer
within each cycle.

5 Simulation Analysis
Here, we conduct a series of simulations in different scenarios and topologies to
evaluate HSCC system.

5.1 Microscopic Behavior of HSCC
We first conduct a small-scale simulation in single-rooted tree (or Dumbell) topol-
ogy where 12 long-lived TCP flows send to a common receiver continuously. We
quantify the effect of HSCC on the average length of loss cycle and goodput of
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Figure 8: 12 long-lived senders in a Dumbell topology

each sender. Figure 8a shows the average length of loss cycles in TCP and TCP-
HSCC. The results suggest that HSCC can help stretch cycle length by up to 4X.
Node 6 (highlighted in red) has zero loss cycle length which was found by inspect-
ing traces is due to starvation (i.e., excessive timeouts). Node 11 (highlighted in
orange) achieves little improvement on loss cycle by HSCC. Figure 8b shows the
goodput of TCP senders. The results show that HSCC helps flows such as node
6 avoid the starvation and grab enough bandwidth. The goodput of node 11 is
degraded due to the small improvement in its loss cycle. To quantify the overall
performance, we inspect the Jain’s Fairness index (defined as (∑i Xi)

2

N ∑i X2
i

). The results
indicate that the fairness index with HSCC has improved by 10% from 0.817 to
0.901.

5.2 Realistic Traffic in Datacenter Topology
We conduct simulation analysis of HSCC system in a datacenter-like topology
with varying workloads and flow size distributions. We use a spine-leaf topology
with 9 leafs and 4 spines using link capacities of 10G for end-hosts and over-
subscription ratio of 5 (the typical ratio in current production datacenters is in
range of 3-20+). Each ToR hosts 16 server totaling 144 servers and per-port queue
is set to 84 packets. We examine scenarios that covers various schemes discussed
in Section 2 (e.g., TCP with RED-ECN, DCTCP and PAIS) and compare their
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Figure 9: Performance metrics of simulation runs in a large 9 Leaf - 4 Spine topology
using Websearch Workload. The traffic generator varies the network load in
the range of [30%, 90%]

performance with HSCC. The performance metrics of interest are FCT for mice
flows (i.e., [0-100] Kbtyes), the average FCT of all flows, # of timeouts and # of
unfinished flows. In simulations, per-hop link delays of 50 µs, TCP is set to the
default TCP RTOmin of 200 ms and TCP is reset to an initial window of 10 MSS,
and a persistent connection is used for successive requests. The flow size and
inter-arrivals distribution are extracted from two workloads (i.e., websearch and
datamining). A parameter (λ ) is used to simulate various network loads. Buffer
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sizes on all links is set to be equal to the bandwidth-delay product between end-
points within one physical rack. Low threshold α1 is set to 25% and high threshold
α2 is set to 50% for HSCC which can be achieved using a shift-register. To ensure
fair comparison with other schemes, control protection feature was disabled.
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Figure 10: Performance metrics of simulation runs in a large 9 Leaf - 4 Spine topology
using Datamining Workload. The traffic generator varies the network load in
the range of [30%, 90%]) Websearch workload. (e-h) Datamining workload.

Figure 9 and Figure 10 shows the average and maximum FCT for small flows
as well as the average FCT and total timeouts of all flows in websearch and
datamining workloads, respectively. The results show the performance of the four
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schemes. We observe that HSCC can greatly improve the FCT of small flows on
average and tail. As a result, the average FCT of all flows is improved for two
reasons: small flows are larger in number and they can finish quicker leaving net-
work resources for large ones. HSCC helps in reducing the number of timeouts
which improves average and max FCT. The results suggests that stretching loss
cycles can lead significant performance gains. We note that PIAS performs better
in datamining workload and worse in websearch workload. We suspect that the
fixed demotion threshold of PAIS and larger flow sizes in websearch lead to star-
vation of certain flows. We inspected the output traces and found that across the
loads [30-90]%, PIAS has 25 unfinished (or starved) flows.

5.3 Sensitivity to the Choice of Thresholds
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Figure 11: Average FCT for small and all flows when α1 and α2 is varied in simulations
using websearch.

We here repeat the last simulation experiment using websearch workload with
various values of low threshold α1 and high threshold α2 to assess the sensitivity
of HSCC to parameter settings.

The simulation settings, flow sizes, inter-arrival times and network loads are
the same as in the previous setup. We report here the achieved FCT of small and
all flows in each case. As shown in Figure 11, the FCT is not affected at all by the
choice of the parameter α1 and α2. Similar results are observed for dataminig.
This is not surprising because in all cases the system switches between low rate
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CBR and TCP but at slightly (sub-microsecond) different times. This means that
our scheme is robust and the operator can deploy without worrying about the right
values for thresholds. Further testing and verification is part of our ongoing work.

6 Implementation and Experiments
We now investigate the performance of the hardware prototype of HSCC con-
troller namely “HystSwitch” switch as well as its end-host helper module which
are presented in Appendix ??. We prototyped HystSwitch on the NetFPGA plat-
form and used it to conduct a series of testbed experiments to verify its potential.

Figure 6 has shown the deployment of HystSwitch system and the interaction
between its components. The HystSwitch system performs the following func-
tions:

1. At connection-setup, flows are hashed into a hash-table with the flow’s 4-
tuples (i.e., source IP, dest. IP, source port and dest. port) used as the key
and the scale used as the value.

2. Flow entries are cleared from the table when a connection is closed (i.e.,
FIN is sent out).

3. The module writes the scale factor for all outgoing ACK packets in the 4-bit
reserved field of TCP headers (or, encode the scale factor into 4-bits of the
receive window field and use the remaining 12 bits for the receive window
values).

4. The end-host module tracks the scaling factor used by local communicating
end-points and explicitly append this information only to outgoing ACKs of
the corresponding flow.

5. The switch module whenever whenever the high threshold is exceeded until
it crosses back the low threshold, it continues to update receive window of
the incoming ACKs.

6. HystSwitch uses the attached scale factor to rescale the used window so
that it can be interpreted correctly by the ACK receiving end-point. Then,
it clears the used reserved bits to avoid packet being dropped by destination
due to invalid TCP check-sum value which avoids the need for recalculating
TCP checksum at the end-host and the switch.
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6.1 Experimental Results and Discussion

Rack 1 Rack 2 Rack 3

Core

ToR

Rack 4

BottleneckNetFPGA 
HystSwitch 1 Gb/s

(a) Testbed Tree Topology (b) The Actual Testbed

Figure 12: Testbed topology for HSCC evaluation

In this set of experiments, we deploy the NetFPGA-based IncastGuard switch
in a small-scale real-testbed with same configuration and setup of FairSwitch and
IncastGuard deployments in Section ?? and Section ??, respectively. Figure 12
shows the topology used in the experiments and Figure 12b shows a photo taken
of the real-life deployment. The objectives of the following micro-benchmark ex-
periments are: i) to verify that with the support of HSCC, TCP can support many
more connections and maintains high link utilization; ii) to verify effectiveness of
HSCC system in reducing incast congestion effect on TCP flows; iii) to quantify
HSCC’s ability to improve the FCT of mice when competing for the bottleneck
link with elephants.

Incast Traffic without Background Workload: First, we run two mild and
heavy incast scenarios where a large number of mice flows transfer 11.5KB sized
blocks.

Experimental Setup: in both scenarios, 7 servers in rack 4, issue 100 web re-
quests to retrieve ”index.html” webpage of size 11.5KB from the other 21 servers
in rack 1, 2 and 3. In this scenario, each requester end-host uses 2 parallel TCP
connections to satisfy the 1000 requests. Hence, a total of 252 ((21×7−21)∗2)
synchronized requests are issued. In the heavy load case, a thousand consecutive
requests are issued however, each process uses 5 parallel TCP connections instead
of 2. This results into 630 flows (i.e., 126×5) at the same time.

Experimental Results: Figure 13 shows, under both mild and heavy load,
HSCC achieves a significantly improved performance for TCP flows. The com-
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Figure 13: Experimental results of two Incast moderate and heavy scenarios. The met-
rics are average, standard deviation and maximum FCT for Cubic, Reno or
DCTCP w/wo HSCC. Each flow is 1000 11.5KB blocks.

peting mice flows benefit under HSCC in the mild case by achieving almost the
same FCT on average but with an order-of-magnitude smaller standard deviation
compared to TCP Cubic and New-Reno (henceforth abbreviated as Reno) with
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Figure 14: Experimental results of two Incast moderate and heavy scenarios. The figures
show Total Packet Drops for Cubic, Reno or DCTCP w/wo HSCC.

DropTail and DCTCP. In addition, it can improve the FCT of the end of the tail
(maximum FCT) by two orders-of-magnitude suggesting that almost all flows (in-
cluding tail-ends) can meet their deadlines. In the heavy case, it can also achieve
noticeable improvements even with 630 flows competing all together. each with
1 MSS (1460 bytes) of window the total traffic of 920KB is ≈ 3.2% larger than
the size of the bottleneck pipe or, 287KB which is the switch Buffer size plus
the bandwidth delay product. Finally, HSCC can efficiently detect the incast and
proactively throttle the flows to avoid packet drops, Figure 14 shows that, it can
significantly decrease the drop rate during incast events by≈ 96% in medium load
compared to only ≈ 86% in heavy load scenarios.

Mild Incast traffic with Background Workload: we need to characterize
HSCC performance when it is subjected to background long-lived flows and its
effect on elephant flows’ performance.

Experimental Setup: incast flows is set to compete with elephants flows
for the same outgoing queue. To this end, 21 iperf [15] long-lived flows is set
to send towards rack 4 continuously for 20 secs. In this case, the incast flows
must compete for the bottleneck bandwidth with each other as well as the new
background traffic. A single incast epoch of Web requests is scheduled to run for
100 consecutive requests (i.e., each client requests a 1.15 MB file partitioned into
100 11.5KB chunks totaling ≈ 145 MBytes) after elephants have reached steady
state (i.e., at the 10thsec).
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Experimental Results: Figure shows that, in medium load, HSCC achieves
a FCT improvements for mice while nearly not affecting elephants’ performance.
Mice flows benefit with HSCC by improving on FCT on average and again with
one order-of-magnitude reduction in FCT standard deviation compared to TCP
(Cubic, Reno) with DropTail and DCTCP. Also, in terms of the tail (i.e., the last
and similarly the 99%), HSCC reduces the tail FCT by two order-of-magnitude
almost close to the average and within 10’s of ms. The improvement means mice
flows finish quickly within their deadlines. Figure 15b shows that elephant flows
are almost not affected by HSCC’s intervention by throttling their rates during
the short incast periods. In Figure 15c, the drops under HSCC is reduced by its
efficient rate control during incast hence mice flows avoid long timeouts of at least
200ms.

Heavy Incast Traffic with Background Workload: We repeat the above
experiment, increasing the frequency of Mice incast epochs to 9 times within the
20 second period (i.e., at the 2nd , 4th, .., and 18th sec).

Experimental Setup: in each epoch, each server requests a 1.15MB file
partitioned into 100 11.5KB chunks totaling ≈ 145 MBytes per epoch and a total
of ≈ 1.3 GBytes for all 9 epochs.

Experimental Results: as shown in Figure 16a, even with the increased in-
cast frequency, HSCC scales well with higher incast rates even-though mice flows
are also fighting their way against fat elephant flows. Mice flows’ average and
standard deviation of FCT see similar improvement as the previous experiments
compared to TCP with DropTail and DCTCP. This can be attributed to the de-
creased packet drops rate with the help of HSCC and hence lesser chances of
experiencing timeouts as show in Figure16c. Compared to the previous experi-
ment, Figure 16b shows, elephants throughput is reduced because of frequent rate
throttling introduced by HSCC during incast periods. However, we believe that
the bandwidth is fairly utilized by mice and elephants with HSCC, hence the lower
elephant goodput when Mice are active.

6.2 Datacenter Workloads based Experimental Results
We use the traffic generator described in Section 2, to run the experiments involv-
ing websearch and datamining traffic workloads. In addition, we resuse iperf pro-
gram [15] to emulate long-lived background traffic (e.g., VM migrations, backups
and so on) in certain scenarios. We setup a scenario to create an One-to-All ex-
periment w/wo background traffic. In One-to-All, clients running on the VMs in
one rack send requests randomly to any of all other servers in the cluster. If back-
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Figure 15: 254 mice flows with 21 elephants: performance of HSCC vs (Cubic or Reno
TCP with DropTail or DCTCP) is reported. Each of the 256 mice flow requests
1.15MB file (= 100×11.5KB) 1 time while competing with 21 elephants

ground traffic is introduced, we run a long-lived iperf flows in all-to-all fashion
to mimic sudden and persistent spike in network load. Even though, we classify
flows with size <= 100KB as small, > 100KB and <= 10MB as medium and
>= 10MB as large. In the following experiments, We focus more on the small
flows which are the target for HSCC.

A Scenario without Background Traffic: we run One-to-All scenario and
report the performance of average, median and maximum FCT and number of
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Figure 16: 630 mice flows with 21 elephants: performance of HSCC vs (Cubic or Reno
TCP with DropTail or DCTCP) is reported. Each of the 630 mice flow requests
1.15MB file (= 100×11.5KB) 1 time while competing with 21 elephants

flows who missed a 200ms deadline for in the small flows. The traffic generator
is set to randomly initiate 1000 requests per server per rack to randomly picked
servers on one of the other racks. Figures 17a, 17b, 17c and 17d show the average,
median and max FCT and missed deadlines for small flows in websearch work-
load. While, Figures 18a, 18b,18c and 18d show the average, median and max
FCT and missed deadlines for small flows in datamining workload. We make
the following observations: i) For websearch workloads, HSCC improves per-

31



 0

 2

 4

 6

 8

 10

 12

 14

RENO
HS-RENO

CUBIC
HS-CUBIC

DCTCP
HS-DCTCP

A
v
e
ra

g
e
 F

C
T
 w

it
h
 E

rr
o
rb

a
rs

 (
m

s)

Scheme

(a) Small: AVG FCT with Errorbar

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

RENO
HS-RENO

CUBIC
HS-CUBIC

DCTCP
HS-DCTCP

F
C

T
 M

e
d
ia

n
 (

m
s)

Scheme

(b) Small Flows: Median FCT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

RENO
HS-RENO

CUBIC
HS-CUBIC

DCTCP
HS-DCTCP

F
C

T
 M

a
x
 (

s)

Scheme

(c) Small Flows: Maximum FCT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

RENO
HS-RENO

CUBIC
HS-CUBIC

DCTCP
HS-DCTCP

#
 o

f 
F
lo

w
s 

M
is

s
e
d
 d

e
a
d

li
n
e
 (

>
=

2
0

0
m

s)

Scheme

(d) Small Flows: # of Missed Deadlines

Figure 17: Performance metrics of One-to-All Websearch workload with no background
traffic

formance of small flows of various TCP variants in both the average, maximum
and missed deadlines FCTs. For example, compared to Reno, Cubic and DCTCP,
HSCC reduces the FCT of small flows by ≈ (34%,33%,5%), ≈ (30%,32%,4%)
and ≈ (58%,34%,6%) on the average, median and maximum, respectively. In
addition, the number of missed deadlines is improved by ≈ (52%,62%,18%) for
Reno, Cubic and DCTCP, respectively. ii) For datamining workload, the improve-
ments are even more significant due to domination of small flows population in
this workload. For instance, compared to Reno, Cubic and DCTCP, HSCC re-
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Figure 18: Performance metrics of One-to-All Datamining workload with no background
traffic

duces the FCT of small flows by ≈ (92%,93%,30%), ≈ (65%,67%,25%) and
≈ (98%,98%,−%) on the average, medium and maximum, respectively. In addi-
tion, the number of missed deadlines is improved by≈ (93%,94%,4%) for Reno,
Cubic and DCTCP, respectively. iii) We notice that DCTCP improves FCT over
its RENO and CUBIC counterparts and HSCC could improve DCTCP perfor-
mance in websearch and datamining workloads.

A Scenario with Background Traffic: to put HSCC under a true stress, we
run the same One-to-All scenario along with an all-to-all long-lived background
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Figure 19: Performance metrics of One-to-All websearch workload with background traf-
fic.

traffic during the experiment. We report similar metrics as in the aforementioned
case. Figures 19a, Figure 19b, 19c and 19d show the average, median and max
FCT and missed deadlines for small flows in this scenario. We observe the fol-
lowing: i) HSCC improves further the average, median and maximum FCT of
small flows regardless of TCP congestion control in use. As shown in the results,
compared to Reno, Cubic and DCTCP, HSCC reduces the FCT of small flows
by ≈ (66%,63%,26%), ≈ (52%,54%,51%) and ≈ (75%,75%,−) on the aver-
age and median, respectively. HSCC managed to decrease the maximum FCT
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and consequently number of missed deadlines by ≈ (75%,75%) for Reno, Cu-
bic, respectively. However, DCTCP sees slight increase in the max FCT and
missed deadlines, which might be attributed for its reaction to excessive ECN
marks caused by background flows.

In summary the experimental results support and highlight the performance
gains (esp. for time-sensitive applications) obtained by adopting HSCC system.
In particular, they show that:

• HSCC minimizes the mean and variance of mice flow completion times and
significantly reduce by 1-2 orders-of-magnitude the FCT for the tail end.

• HSCC can improve further if the bandwidth-hungry elephants are hogging
the network.

• HSCC efficiently handles mice traffic, even in low and high frequency in-
cast.

• HSCC achieves its goals with no more than default assumptions about the
network stack and without any modifications to guest VMs.

7 Related Work
Much work has been devoted to addressing congestion problems in datacenters
and in particular incast congestion. Recent works [9, 33, 8] analyzed the nature
of incast events in data centers and shown that incast leads to throughput collapse
and longer FCT. They show in particular that throughput collapse and increased
FCT are to be attributed to the datacenter ill-suited timeout mechanism and use of
large initial congestion windows in TCP’s congestion control.

Towards solving the incast problem, one of the first works [20] proposed
changing the application layer by limiting the number of concurrent requesters,
increasing the request sizes, throttling data transfers and/or using a global sched-
uler. Another work [29] suggested modifying the TCP protocol in data centers by
reducing the value of the minRTO value from 200ms to microseconds scale. Then
DCTCP [1] and ICTCP [31] were proposed as a new TCP designs tailored for data
centers. DCTCP modifies TCP congestion window adjustment function to main-
tain a high bandwidth utilization and sets RED’s marking parameters to achieve
a short queuing delays. ICTCP modifies TCP receiver to handle incast traffic by
adjusting the TCP receiver window proactively, before packets are dropped. How-
ever, all these solutions require changing the TCP protocols at the end users, they
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can not react fast enough with the dynamic nature of data center traffic and they
impose a limit on the number of senders.

Similar to DCTCP, DCQCN [34] was proposed as an end-to-end congestion
control scheme implemented in custom NICs designed for RDMA over Con-
verged Ethernet (RoCE). It achieves adaptive rate control at the link-layer relying
on Priority-based Flow Control (PFC) and RED-ECN marking to throttle large
flows. DCQCN, not only relies on PFC which adds to network overhead, it intro-
duces the extra overhead of the explicit ECN Notification Packets (CNPs) between
the end-points. TIMELY [25] is another congestion control mechanism for dat-
acenters which tracks fine-grained sub-microsecond updates in RTT as network
congestion indication. However, its fine-grained tracking increases CPU load on
the end hosts and it is sensitive to delay variations on the backward path.

8 Report Summary
In this report, we showed empirically that the low bandwidth-delay product of
datacenters results into excessive RTOs and the short TCP loss cycle was found
to be partially blamed for it. We have demonstrated analytically that short cycles
can greatly degrade TCP performance when the losses at the end of the cycle are
only recover-able via RTO. To improve the performance of short TCP flows, we
have proposed stretching the period of TCP cycles in datacenters. To this end,
we designed an efficient control theory inspired hysteretic switching mechanism
namely HSCC. The proposed system improves the FCT of most TCP small flows
who are shown to account for the large part of flows generated by data center
workloads. The design is based on the outcomes of our empirical and behav-
ioral analysis of TCP in datacenters. HSCC consists of a switch implementing
a two-threshold hysteresis control laws to proactively switch between TCP mode
and a slower CBR mode. The simulations and testbed experiments show that
HSCC improves the FCT for mice traffic without impacting the progress of ele-
phant flows. Similar to RWNDQ and IQM, HSCC stands for our principle point in
this thesis which is improving TCP performance in public cloud networks where
modifications to TCP stack of guest VMs are prohibited. We believe further ex-
periments of our switch-based schemes are necessary in large data centers and
we will also negotiate with switch manufacturers possible adoption of our switch-
based schemes in their ASIC prototypes. However, from our experience, most
switch-based schemes see slow real adoption and they have to go through rigor-
ous and length testing and production cycles. For this reason, in the next part, we
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explore hypervisor-based approach to solve similar TCP flow problems observed
in data centers. Hypervisor-based approaches are more appealing and may see
immediate adoption because they require no modification to the guest VMs nor
the switching devices.
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