
SDN-based Generic Congestion Control Mechanism for Data Centers:
Implementation and Evaluation

Ahmed M. Abdelmoniem and Brahim Bensaou
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
{amas, brahim}@cse.ust.hk

October 14, 2016

Abstract

To meet the deadlines of interactive applications, congestion-agnostic transport protocols like UDP are increasingly used
side by side with congestion-responsive TCP. As bandwidth is not totally virtualized in data centers, service outage may occur
(for some applications) when such diverse traffics contend for the small buffers in the switches. In this paper we present
SDN-GCC, a simple and practical congestion control mechanism that puts monitoring and control decisions in a centralized
controller and traffic control enforcement in the servers’ hypervisors. SDN-GGC builds a congestion control loop between
the controller and hypervisors without assuming any cooperation from tenants applications (i.e, transport protocol) ultimately
making it deployable in existing data centers without any service disruption. SDN-GCC is evaluated via extensive simulation
in the ns2 network simulator.

1 Introduction
To achieve tenants isolation and use resources more effectively, resource virtualization has become a common practice in today’s
public datacenters. In most cases, each tenant is provisioned with virtual machines with dedicated virtual CPU cores, memory,
storage, and a virtual network interface card (NIC) over the underlying shared physical NIC, however, tenants can not assume
predictability nor measure-ability of bounds on network performance, as no mechanisms are deployed to explicitly allocate and
enforce bandwidth in the cloud. Albeit, cloud operators can provide tenants with better virtual network management thanks
to the recent development in control plane functions. For example, Amazon introduced “Virtual Private Cloud (VPC)” [3] to
allow easy creation and management of tenant’s private virtual network. VPC can be viewed as an abstraction layer running on
top of the non-isolated shared network resources of AWS’s public cloud. Additionally, Software Defined Networking (SDN)
[20] is effectively deployed to drive inter- and intra-datacenter communications with added features to make the virtualization
and other network aspects easy to manage. For example, both Google [14] and Microsoft [11] have deployed fully operational
SDN-based WAN networks to support standard routing protocols as well as centralized Traffic Engineering (TE).

On the other hand, the data plane in intra-datacenter networks has seen little progress in aportionning and managing band-
width to overcome congestion, improve efficiency, and provide isolation between competing (greedy) tenants. In principle,
isolation can simply be achieved through static reservation [10, 5], where tenants can enjoy a predictable, congestion-free net-
work performance. However, static reservations lead to inefficient utilization of the network capacity. To avoid such pitfall,
tenants should be assigned minimum bandwidth by using the hose model [8] which abstracts the collective VMs of one ten-
ant as if they were connected via dedicated links to a virtual switch (vswitch). In such setup, different VMs may reside on
any physical machine in the datacenter, yet, each VM should be able to send traffic at its full rate as specified by the vswitch
abstraction layer, regardless of co-existing VMs’ traffic patterns or the nature of the workload generated by competing VMs.

The following are the necessary elements that can be incorporated together for this purpose: i) an intelligent and scalable
VM admission mechanism within the datacenter for VM placement where minimum bandwidth is available. To facilitate this,
topologies with bottlenecks at the core switches (such as uplink over-subscription or a low bisection bandwidth) should be
avoided as much as possible; ii) a methodology to fully utilize the available high bisection bandwidth (e.g., a load balancing
mechanism and/or multi-path transport/routing protocols); and iii) a rate adaptation technique to ensure conformance of VM
sending rates to their allocated bandwidth, while penalizing misbehaving ones.

1

A number of interesting research works has investigated more or less successfully the first two elements of this framework
[1, 9, 6, 23]. In [1, 9], highly scalable network topologies offering a 1:1 over-subscription and a high bisection bandwidth were
proposed. These topologies are shown to be easily deployable in practice and can simplify the VM placement at any physical
machines with sufficient bandwidth to support the VM. Efficient routing and transport protocols [6, 23] were designed for DCN
to achieve a high utilization of the available capacity. Finally, in terms of traffic control, much of recent work [2, 25] focused on
restructuring TCP congestion control and its variations to efficiently utilize and fairly share bandwidth among flows of the same
variant. However, both lack true isolation among tenants as a tenant may gain more bandwidth by opening parallel connections.
Even worse, in mutli-tenant environments, various un-friendly transport protocols co-existence leads to starvation.

In this paper, we propose a SDN-based generic congestion control (SDN-GCC) mechanism to address this issue. We first
introduce the idea behind SDN-GCC in Section 2, then discuss our proposed methodology and present SDN-GCC framework
in Section 3. We show via ns2 simulation how SDN-GCC achieves its requirements with high efficiency in Section 5. Finally,
we conclude the paper in Section 9.

2 Transport Isolation Problem
With the recent introduction of a significant number of new transport protocols designed mainly for DC networks in addition
to old protocols that are still in use by most applications, the following challenges have surfaced: i) most of these protocols
are agnostic to the nature of VM aggregate traffic demands leading to inefficient distribution of the capacity across competing
VMs (for instance a VM could gain more throughput by opening parallel TCP connections); ii) many versions of TCP co-exist
in DC networks (e.g., TCP NewReno/MacOS, compound TCP/Windows, Cubic TCP/Linux, DCTCP/Linux, and so on). This
exacerbates the bandwidth inefficiency and unfairness; and, iii) many DC applications rely on UDP to build custom transport
protocols (e.g., [18]), that are not responsive to congestion signals. This sounds the knell of any solution to the problem that
only relies on end-to-end TCP. While such problems have been revealed in the context of Internet two decades ago, recent
studies [13, 16] have confirmed that such problems of unfairness and bandwidth inefficiency also exist in DCNs despite their
characteric small delays, small buffers and different topologies from those found in the Internet. Consequently, (because of
such characteristics) a new solution to the problems of congestion in DC networks is needed, and it must appeal to both cloud
operators and cloud tenants. In [17] we proposed an IP-based congestion control mechanism that relies on a collaborative
information exchange between hypervisors. The solution involves the use of ECN marking as congestion indication which is
aggregated and fed back between the hypervisors to enable network bandwidth partitioning through dynamic (adaptive) rate
limiters. In spite of the appealing performance gains achieved, the mechanism has shown a few drawbacks: 1. Security: as it
uses the unused IP reserved bit known as the “Evil-bit”, it may raise security concerns and may not be middleboxes-friendly;
2. Overhead: the hypervisors need to maintain flow tracking tables on a per VM-to-VM basis, which adds burden to the
hypervisor’s processing overhead; and 3. Locality: the lack of global knowledge of the network condition forces hypervisors
to react only to local VM-to-VM congestion.

In this work, we see an opportunity to invoke the powerful control features and the global scope provided by SDN to revisit
the problem from a totally different perspective with additional realistic design constraints. As such we propose a solution with
the following intuitive design requirements: R1) simple enough to be readily deployable in existing production datacenters;
R2) agnostic to (or independent of) the transport protocol in use; R3) requires no changes to the tenant’s OS and makes no
assumption of any advanced network hardware capability other than those available in commodity SDN switches; R4) minimal
overhead on end-host’s hypervisor.

All of today’s communication infrastructure from hardware devices to communication protocols have been designed with
requirements derived from the global Internet. As a result to cope with scalability and AS autonomy, the decentralized approach
has been adopted, relinquishing all intelligence to end systems. Yet, to enable responsiveness to congestion regardless of the
transport protocol capabilities and in time-scales that commensurate with datacenter delays, it is preferable to adopt centralized
control as it provides a global view of congestion and is known to achieve far better performance. Nevertheless to reconcile
existing hardware and protocols (designed for distributed networks) with the centralized approach we impose design require-
ments R1-R4 on SDN-GCC. As such the core design of SDN-GCC relies on outsourcing the congestion control decisions to
the SDN controller while the enforcement of such decisions is carried out by the end-host hypervisors.

3 Proposed Methodology
Figure 1 shows SDN-GCC’s system design which is broken down into two parts, a network application that runs on the SDN
controller (network OS), responsible for monitoring network state by querying the switches periodically via SDN’s standard
southbound API and signalling congestion; and a hypervisor-based shim-layer, responsible of enforcing per-VM rate control in

2

Network Operating System (NOS)
North-Bound API

South-Bound APIController

Routing FirewallSDN-GCC ...

Shim-Layer

Hypervisor

NIC

V
M

2

V
M

1

V
M

3

1

2

3

4

R3R2R1
5

Figure 1: SDN-GCC high-level system design: 1) congestion point; 2) network statistics; 3) congestion tracking; 4) congestion notification;
5) rate adjustment.

response to congestion notification by the control applications. The following scenario sketches the SDN-GCC cycle: 1) When-
ever the total incoming load exceeds the link capacity, the link (in-red) becomes congested implying that senders are exceeding
their allocated rates. 2) SDN-switches sends to the network OS periodic keep-alive and statistics through the established con-
trol plane between them (i.e, OpenFlow or sFlow). Whenever necessary, the switch would report the amount of congestion
experienced by each output queue of its ports. 3) The SDN-GCC APP co-located with the network OS (or alternatively com-
municating via the north-bound API) tracks congestion events in the network. 4) SDN-GCC APP communicates with the
SDN-GCC shim-layer of the sending servers whose VMs are causing the congestion. 5) SDN-GCC shim-layer takes corrective
action by adjusting the rate-limiter of the target VM.

We start from a single end-host (hypervisor) connecting all VMs where bandwidth contention happens at the output link
(i.e, when multiple senders compete to send through the same output NIC of the virtual switch). The hypervisor needs to
distribute the available NIC’s capacity among VMs and ensure compliance of the VMs’ weights with the allocated shares.
Hence it employs a mechanism to apply rate limiters on a per-VM basis. Table 1 shows the variables needed to implement
a per-VM token-bucket rate limiter. Ideally, when a virtual port becomes active, its variables are initialized and the NIC’s
nominal capacity is redistributed among the rate limiters of currently active VMs by readjusting the rate and bucket size of
all active VMs’ token buckets on that NIC. Then we need to extend the allocation of single hypervisor to account for the in-
network congestion caused by a network of hypervisors managing tenants’ VMs. In practice, congestion may always happen
within the datacenter network, if the network is over-subscribed or does not provide full bisection bandwidth. SDN-GCC in
an effort to account for this limitation, relies on readily available functionality in SDN switches to convey congestion events to
the controller. To elaborate more, SDN-GCC controller can keep a centralized record of congestion statistics by periodically
collecting state information from the switches as shown in Table 1. ECN marking is chosen as a fast live congestion indication
to signal the onset of possible congestion at any shared queue. However, Usage of RED and ECN marking could be avoided if
drop-tail AQM keeps statistics of backlog exceeding a certain pre-set threshold.

SDN-GCC APP running on top of the network OS, keeps record of each network-wide state information (i.e, congestion
points). Hence, it can infer the bottleneck queues based on this information and make intelligent decisions accordingly. When-
ever necessary, it sends congestion notifications to the shim-layer to adjust the sending rate of the affected VM. Upon receiving
any congestion notification The shim-layer reacts by adjusting VM’s rate-limiter proportionally to the congestion level in the
network and gradually increases the rate after a while when no more congestion messages are received.

3

Table 1: Variables tracked at the shim-layer and the Controller

Variable name (per VM) Description
source IP address of source VM
vport virtual port connecting VM
rate The allocated sending rate
bucket The capacity of the token bucket in bytes
tokens The number of available tokens
senttime The time-stamp of last transmission

Variable name (Controller) Description
SWITCH List of the controlled SDN switches

SWITCHPORT List of the ports on the switches
DSTSRC List of destinations to sources pairs

IPTOPORT List of IP to switch port pairs
MARKS ECN marks reading of for each switch port

4 Design and Implementation
As explained above, SDN-GCC needs two components: shim-layer at the servers and the control APP that runs on top of the
network OS. These mechanisms can either be implemented in software, or hardware or a combination of both as necessary. We
simplified the design and concepts of SDN-GCC so that the built system is able to maintain line rate performance at 1-10Gb/s
while reacting quickly to deal with congestion within a reasonable time.

4.1 SDN-GCC Shim-Layer
SDN-GCC shim-layer processing is described in Algorithm 1. The major variables it tracks are the rate, the number of tokens
and the depth of the bucket variables per-VM per-NIC where the per-VM rate limiters are implemented as counting token
buckets where virtual NIC j has a rate R(i, j), bucket capacity B(i, j) and number of tokens T (i, j) on physical NIC i. In
addition, the shim-layer will also translate the received congestion message from the controller on a per-source basis.

Initially, the installed on-system NICs are probed and the values of their nominal data rate R(i), bucket size B(i) are
calculated. Thereafter, when the first packet is intercepted from a new VM, NIC capacity is redistributed and a new capacity
share “Capacity Share” is calculated. The new value is used to update the entries for each active VM on that NIC in terms of
allocated rate R(i, j) and then the new VM is marked as currently active on that NIC.

After a certain time of inactivity (set to 1 sec in our simulation), the variables used for VM tracking are reset and the
allocation is reclaimed to be redistributed among currently active VMs. As shown in Table 1, the state of the communicating
VM is tracked only through token bucket and congestion specific variables. Shim-layer algorithm 1 being located at the
forwarding stage of the stack, on arrival or departure of a packet P , it detects the packet’s outgoing port j and incoming port i.
For departing packets, the current value of available tokens T (i, j) is retrieved and refreshed based on the elapsed time since
the last transmission. Then, using the new T (i, j) value, the packet is allowed for transmission if T (i, j) ≥ size(pkt), in this
case the packet length is deducted from T (i, j), otherwise the packet is dropped. For arriving packets, it is only intercepted if
it is the special congestion message which is used for rate limiter adjustment.

For each incoming notification, the algorithm cuts the sending rate in proportion to the rate of marking received capped
by the Min Rate set by the operator. Hence, as sources cause more congestion in the network, the mark amount received
increases and as a result their sending rates decreases proportionally until the congestion subsides. When Congestion messages
becomes less frequent or after a pre-determined timer Congestion T imeout elapses, the algorithm starts to gradually increase
the source VMs’ rate conservatively. The rate is increased until it reaches its “Capacity Share” or congestion is notified again
leading to another reduction. Function ”scale(NIC Cap)” is used to scale the amount of rate increase and decrease proportional
to the current rate and to smooth out large variations in rate dynamics.

4.2 SDN-GCC APP
SDN-GCC APP needs to probe for congestion statistics on a regular basis from the queues of the SDN switches in the network
and send a notification messages toward the concerned VMs that are creating congestion on a given queue. This is accom-
plished by crafting a special message to VMs with the amount of marking they have caused. For simplicity, we assume that
each of the involved VMs contribute equally to the congestion and hence the marks amount is divided equally among source

4

Algorithm 1 SDN-GCC Shim-layer Algorithm
1: /*i and j are index of the NIC and VNIC, respectively*/
2: procedure PACKET DEPARTURE(P, i, j)
3: T (i, j) = T (i, j) +R(i, j)× (now()− f.senttime)
4: T (i, j) =MIN(B(i, j), T (i, j))
5: if T (i, j) ≥ Size(P) then
6: T (i, j) = T (i, j)− Size(P)
7: senttime(i, j) = now()
8: else
9: Queue until token regeneration OR Drop

10: procedure CONTROL PACKET ARRIVAL(PKT, i, j)
11: if Packet has congestion notification message then
12: marks = int(msg)
13: if marks ≥ 0 then
14: congdetected(i, j) = true
15: elapsedtime = now()− congtime(i, j)
16: markrate = marks

elpasedtime

17: R(i, j) = R(i, j) − (markrate × scale(NIC Cap))
18: R(i, j) =Max(Min Rate,R(i, j))
19: congtime(i, j) = now()

20: else
21: Send to normal packet processing
22: procedure TIMER TIMEOUT

23: for each i in NICs and j in VNICs do:
24: if now()− senttime(i, j) ≥ 1sec then
25: active(i, j) = false
26: redistribute NIC capacity among active flows
27: for each i in NICs and j in VNICs do:
28: if now()− congtime(i, j) ≥ Cong T imeout then
29: congdetected(i, j) = false

30: if congdetected(i, j) == false then
31: R(i, j) = R(i, j) + scale(NIC Cap)
32: R(i, j) =MIN(Capacity Share,R(i, j))

VMs. Noticeably, operations of SDN-GCC APP is quite simple and does not incur much processing overhead onto the central
controller. The following Algorithm 2 describes the APP in detail.

SDN-GCC Controller shown in Algorithm 2 is an event-driven mechanism which implements two major event handlers:
packet arrivals of unidentified flows (miss-entries) from switches and congestion monitor timer expiry to trigger warning mes-
sages to the involved sources if necessary.

1. Upon a packet arrival: The packet is examined to extract the necessary information to establish source to destination
SDTSRC relationship and destination to port relationship IPTOPORT . This is necessary to establish associativity
between congested ports and corresponding sources. In addition, The timer for congestion monitoring is armed if it is
not currently.

2. Congestion monitor timer expiry: For each switch sw, the controller probes for marking statistics through OpenFlow
or sFlow protocols by calling function readmarks(sw) and then the new marks of each switch port p is calculated. For
each port, if there are new markings (due to congestion), then the controller needs to advertise this to all related sources.
The destination list of this port is retrieved using function getalldst(sw, p) and then for each destination its sources are
retrieved using function getallsrc(dst). The controller now piggybacks on any outgoing control message or crafts an
IP message consisting of an Ethernet Header (14 bytes), an IP header (20 bytes), and a payload (2-byte) containing the
number of ECN marks, that have been observed in the last measurement period, divided by the number of sources. This
message is created for each source concerned (sending through the port p experiencing congestion) and sent with the
source IP of the destination VM and destination IP of the source VM (which allows the hypervisor shim-layer to identify
the correct forwarding ports of source VM).

5

Algorithm 2 SDN-GCC Controller Algorithm
1: procedure Packet Arrival(P, src, dst)
2: if IPpacket then
3: β ← β + 1
4: SDTSRC[P.src] = P.dst
5: IPTOPORT [P.src] = P.in port
6: if Timer is not ON then
7: start Congestion Monitor Timer
8: procedure Congestion Monitor T imeout
9: for each sw in SWITCH do

10: sw marks ← readmarks(sw)
11: for each p in SWITCH PORT do
12: α ← MARKS[sw][p] − sw marks[p]
13: MARKS[sw][p] ← MARKS[sw][p] + α
14: if α > 0 then
15: DSTLIST ← getalldst(sw, p)
16: for each dst in DSTLIST do
17: SRCLIST [dst] ← getallsrc(dst)
18: β ← β + size(SRCLIST [dst])

19: if totalsrc > 0 then
20: m ← α

β

21: for each dst in DSTLIST do
22: for each src in SRCLIST [dst] do
23: msg ← MSG (m , dst , src)
24: send msg to src

25: Restart Congestion Monitor Timer(Ti)

4.3 Implementation and Practical Issues
Any extra traffic sent by the VM in excess of its share can either be queued or simply dropped and resent later by the transport
layer. In the former case, an extra per-VM queue is used for holding the traffic for later transmission whenever the tokens are
regenerated. We tested both approaches and the queuing mechanism turned out to achieve marginally better performance which
did not motivate its usage.

If ECN marking is in use, the shim-layer needs to clear any ECN marking used to track congestion before delivering
the packets to target VMs. In addition, to force universal marking along the path, all outgoing packets are marked with the
ECN-enabled bit.

SDN-GCC is a distributed mechanism among the control APP and the shim-layer with very low computational complexity
and can be integrated easily in any network whose infrastructure is based on SDN. In addition, the shim layer at the hypervisor
requires operations of O(1) per packet, as a result the additional overhead is insignificant for hypervisors running on DC-grade
servers. Finally, the control APP’s low complexity makes it ideal for fast response to congestion (within few milliseconds time
scale).

5 Simulation Analysis
In this section, we study the performance of the proposed scheme via ns2 simulation in network scenarios with a high
bandwidth-low delay. We examine the performance of a tagged VM that uses New-Reno TCP with SACK-enabled. The
tagged TCP connection competes with other VMs running similar New-Reno TCP, DCTCP, or UDP in four cases: 1) a setup
that uses RED AQM with non-ECN enabled TCP; 2) a setup that uses RED AQM with ECN enabled TCP; 3) a setup that uses
HyGenICC as the traffic control mechanism [17]; and 4) a setup that uses proposed SDN-GCC framework. For HyGenICC,
there is a single parameter settings of timeout interval for updating flow rates which should be larger than a single RTT, in the
simulation this value is set to 500 µs (i.e, 5 RTTs). However, in case of SDN-GCC, timeout interval for congestion monitoring
and reporting APP of the controller is set to a large value of 5ms (i.e, 50 RTTs). In all simulation experiments, we adjust RED
parameters to achieve marking based on instantaneous queue length at the threshold of 20% of the buffer size.

6

5.1 Simulation Setup
Network simulator ns2 version 2.35 [19] is used, which we have extended with both HyGenICC module inserted at the link
elements in topology setup and the whole SDN-GCC framework (i.e, the controller element and hypervisor shim-layer)1. In
addition, we patched ns2 using the publicly available DCTCP patch. We use in all our simulation experiments speed links of 1
Gb/s for sending stations, a bottleneck link of 1 Gb/s, low RTT of 100 µs and the default TCP RTOmin of 200 ms.

We use a single-rooted tree (Dumbell) topology with single bottleneck at the destination and run the experiments for a
period of 30 sec. The buffer size of the bottleneck link is set to be more than the bandwidth-delay product in all cases (100
Packets), the IP data packet size is 1500 bytes.

5.2 Simulation Results and Discussion
We simulated several scenarios that lead all to the same results. First, for purpose of clarity, we consider a toy scenario with 4
elephant flows, a tagged flow and 3 competitors. In the experiments, the tagged FTP flow uses TCP NewReno and competes
either with 3 FTP flows using TCP newReno, DCTCP or 3 CBR flows using UDP. Competitors start and finish at the 0th and
20thsec, respectively while tagged flow starts at 10thsec until the end of simulation. Hence, from 0 to 10s (period 1) only the
competitors occupy the bandwidth, from 10s to 20s (period 2) bandwidth should typically be shared fairly by all flows, and
from 20s to 30s (period 3) the tagged flow enjoys the whole bandwidth. This experiment is designed to demonstrate work
conservation, sharing efficiency, and convergence speed of SDN-GCC compared to other setups.

Figure 2 shows the instantaneous goodput of the tagged TCP flow along with the mean goodput (in the legend, the optimal
mean goodput of tagged TCP would be 0Mb/s for period 1, 250Mb/s for period 2, 1000Mb/s for period 3 and 416Mb/s for
all the periods) with respect to its competitor. As shown in Figure 2a, without any explicit rate allocation mechanisms and
without ECN ability, TCP struggles to grab any bandwidth when competing with DCTCP and UDP flows as DCTCP and
UDP are more aggressive in grabbing bandwidth. Figure 2b suggests that ECN can partially ease the problem, however the
achieved throughput reaches the allocated share only when the competitor uses the same TCP protocol. This can be attributed
to the fact that TCP reacts conservatively to ECN marks unlike DCTPC which reacts proportionally to the fraction of the
ECN marks. Simulations with a static rate limit of 250 Mb/s (fair-share), show that a central rate allocator assigning rates
per VM can achieve perfect rate allocation with no work-conservation (Utilization is 250 Mb/s when only the tagged flow is
active). Figures 2c shows that HyGenICC [17] thanks to its distributed and live adaptive rate limiters, can respond effectively to
congestion events. Finally, Figures 2d suggest a similar result as HyGenICC can be achieved with the help of a regular control
messaging from a central controller whenever necessary. Hence, SDN-GCC can efficiently leverage its global view of network
state to adjust the rate limiters of the competing flows that cause congestion while maintaining high network utilization.

Figure 3 suggests that SDN-GCC can scale well with an increasing number of senders. The tagged TCP flow and competing
flows, starting at 10th, adjusts their rates due to the incoming control messages when the controller starts observing congestion
in the network. The adjustment messages trigger flow rate changes up and down until they reach the equilibrium point where
sources start oscillating slightly around the target share of ≈ 1Gb

8 ≈ 125Mb and ≈ 1Gb
16 ≈ 62.5Mb respectively. To study the

effect of controller delay, Figure 4 shows the same 4 senders scenario but with larger control delay of 100 RTT and 500 RTT. It
suggests that flows oscillations and convergence period increases as the controller delay increases to values of 10ms and 50ms,
respectively. This behavior is expected due to slower control message arrivals leading to slower reaction at the shim-layer
and lesser rate adjustments. An out of band control path [22] would avoid any added overhead and achieve faster controller
monitoring of switches and reporting to the servers.

6 Implementation Details of SDN-GCC framework
Below are the main procedures that constitute the SDN-GCC OpenvSwitch implementation. We show here the find active
function which given the in and out ports, it returns the corresponding index of these ports in the matrices. Also, we present
the update rates which updates each VMs rate based on the current level of congestion in the network2. We show also the
timer callback function which is our rate update daemon that fires every interval. In addition, we show the sdngcc send and
sdngcc receive functions which are responsible for handling the arrival and departure events of the packets in the OpenvSwitch,
they are injected into the packet processing pipeline of the OpenvSwitch kernel datapath module.

1 / / F i n d i n g t h e f a i r r a t e among a c t i v e VM

1Simulation code is available upon request from the authors.
2We use a different mechanism to react to congestion rather than the AIAD algorithm described in section ??. We use the average of the moving average of

the fraction of marked packets in each interval

7

0 5 10 15 20 25 30
Time (s)

0

200

400

600

800

1000

1200

T
ag

g
e
d
 F

lo
w

 T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Competitor (Mean Thr)

TCP (416)

DCTCP (319)

UDP (153)

(a) non-ECN-enabled TCP

0 5 10 15 20 25 30
Time (s)

0

200

400

600

800

1000

1200

T
ag

g
e
d
 F

lo
w

 T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Competitor (Mean Thr)

TCP (416)

DCTCP (375)

UDP (359)

(b) ECN-enabled TCP

0 5 10 15 20 25 30
Time (s)

0

200

400

600

800

1000

1200

T
ag

g
e
d
 F

lo
w

 T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Competitor (Mean Thr)

TCP (406)

DCTCP (410)

UDP (410)

(c) HyGenICC

0 5 10 15 20 25 30
Time (s)

0

200

400

600

800

1000

1200
T
ag

g
e
d
 F

lo
w

 T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Competitor (Mean Thr)

TCP (407)

DCTCP (407)

UDP (405)

(d) SDN-GCC

Figure 2: Goodput and mean of tagged TCP flow while competing with 3 senders using either TCP, DCTCP or UDP.

2 vo id find_active (vo id)
3 {
4 f o r (i=0; i<ethdevcount ; i++)
5 {
6 u n s i g n e d i n t avg_sent=0 ,active_count=0;
7 fair_rate [i]=eth_rate [i] ;
8 f o r (j=0; j<virtdevcount ; j++)
9 {

10 i f (lastsent [i ∗ DEV_MAX + j]>0 && now − lastsent [i ∗ DEV_MAX + j] >= 1000)
11 {
12 isactive [i ∗ DEV_MAX + j] = f a l s e ;
13 reset_hygenicc_dev (j) ;
14 }
15 e l s e
16 {
17 isactive [i ∗ DEV_MAX + j] = t r u e ;
18 active_count++;
19 }
20 }
21 }
22 i f (active_count>1)
23 fair_rate [i] = eth_rate [i] / active_count ;
24 }

8

0 5 10 15 20 25 30
Time (s)

0

200

400

600

800

1000

1200

T
ag

g
e
d
 F

lo
w

 T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Competitor (Mean Thr)

TCP (374)

DCTCP (374)

UDP (366)

(a) 8 senders scenario

0 5 10 15 20 25 30
Time (s)

0

200

400

600

800

1000

1200

T
ag

g
e
d
 F

lo
w

 T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Competitor (Mean Thr)

TCP (347)

DCTCP (347)

UDP (336)

(b) 16 senders scenario

Figure 3: Goodput and mean of tagged TCP flow competing with 7 and 15 senders using either TCP, DCTCP or UDP.

0 5 10 15 20 25 30
Time (s)

0

200

400

600

800

1000

1200

T
ag

g
e
d
 F

lo
w

 T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Competitor (Mean Thr)

TCP (404)

DCTCP (404)

UDP (400)

(a) 10ms monitor interval

0 5 10 15 20 25 30
Time (s)

0

200

400

600

800

1000

1200

T
ag

g
e
d
 F

lo
w

 T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Competitor (Mean Thr)

TCP (373)

DCTCP (373)

UDP (347)

(b) 50ms monitor interval

Figure 4: Same as scenario in Fig 2 but 10ms (100RTT) and 50ms (500RTT) control period are used.

Listing 1: Find Active VMs

1 / / R e f i l l Tokens P r o c e d u r e
2 vo id update_rates (vo id)
3 {
4 i n t i ,j ,k ;
5 / / F ind t h e a c t i v e VMs
6 findactive () ;
7 f o r (i=0; i<ethdevcount ; i++)
8 {
9 f o r (j=0; j<virtdevcount ; j++)

10 i f (isactive [i ∗ DEV_MAX + j])
11 {
12 bucket [i ∗ DEV_MAX + j] = MAX (MIN_BUCKET , depth ∗ (fair_rate [i] >> 3) ∗ interval) ;
13 u n s i g n e d i n t lostrate = (fair_rate [i] ∗ avgalpha [j]) >> 1 0 ;
14 rate [i ∗ DEV_MAX + j] = MAX (MIN_RATE , fair_rate [i] − lostrate) ;
15 }

9

16 }
17 }

Listing 2: SDN-GCC Update Rates Procedure

1 / / Ra te Update Daemon
2 hrtimer_restart timer_callback (hrtimer ∗timer)
3 {
4 i n t i ,j ;
5 l ong i n t now=jiffies ;
6 i f (sdngcc_enabled () && sdngcc_timerrun)
7 {
8 / / c a l c u l a t e a v e r a g e a l p h a v a l u e o f each VM
9 f o r (i=0; i<ethdevcount ; i++)

10 f o r (j=0; j<virtdevcount ; j++)
11 i f (isactive [i ∗ DEV_MAX + j])
12 avgalpha [j]=track_get_avg_alpha (virtipaddress [j]) ;
13 e l s e
14 avgalpha [j] = 0 ;
15

16 / / Update r a t e s based on t h e new a v e r a g e a l p h a
17 update_rates () ;
18

19 / / R e s t a r t t h e t i m e r f o r a new i n t e r v a l
20 ktime_t ktnow = hrtimer_cb_get_time(&sdngcc_hrtimer) ;
21 sdngcc_ktime = ktime_set (0 , interval ∗ ((u n s i g n e d long) 1E3L)) ;
22 hrtimer_forward(&sdngcc_hrtimer , ktnow , sdngcc_ktime) ;
23 r e t u r n HRTIMER_RESTART ;
24 }
25 e l s e
26 sdngcc_timerrun= f a l s e ;
27 r e t u r n HRTIMER_NORESTART ;
28 }

Listing 3: SDN-GCC Rate Update Daemon

1 / / Sender Rate L i m i t e r Hand le r
2 vo id sdngcc_send (sk_buff ∗skb , vport ∗inp ,vport ∗outp ,sw_flow_key ∗key)
3 {
4 i n t i ,j ;
5 identify_devices (inp ,outp,&i,&j) ;
6

7 / / F ind t h e f low e n t r y t h a t match wi th t h i s p a c k e t
8 track_key_extract (skb , &track_key) ;
9 flow = ovs_track_tbl_lookup(&track_key , s i z e o f (track_key)) ;

10

11 i f (i>=0 && j>=0)
12 {
13 virt_isactive [i ∗ DEV_MAX + j]= t r u e ;
14 lastsent [i ∗ DEV_MAX + j]=jiffies ;
15 sent [i ∗ DEV_MAX + j] + + ;
16

17 / / Add new t o k e n s b e f o r e s e n d i n g t h e p a c k e t based on t h e based i n t e r v a l s i n c e l a s t s e n t
18 ktime_t now_ktime=ktime_get () ;
19 i n t delta_us = ktime_us_delta (now_ktime , lastupdate [i ∗ DEV_MAX + j]) ;
20 i n t newtokens = (rate [i ∗ DEV_MAX + j] >> 3) ∗ delta_us ;
21 tokens [i ∗ DEV_MAX + j] = MIN (bucket [i ∗ DEV_MAX + j] , tokens [i ∗ DEV_MAX + j] + newtokes) ;
22 lastupdate [i ∗ DEV_MAX + j] = now_ktime ;
23

24 / / I f enough t o k e n s a r e a v a l i a b l e send t h e packe t , o t h e r w i s e drop
25 i f (skb−>len <= tokens [i ∗ DEV_MAX + j])
26 tokens [i ∗ DEV_MAX + j]= MAX (0 , tokens [i ∗ DEV_MAX + j] − skb−>len) ;
27 e l s e
28 {
29 kfree_skb (skb) ;
30 r e t u r n ;
31 }

10

32

33 i f (!flow)
34 flow=insert_flow (track_key) ;
35

36 flow−>used=jiffies ;
37 flow−>out_byte_count+=skb−>len ;
38 flow−>out_packet_count++;
39 }
40

41 i f (skb && outp)
42 ovs_vport_send (outp , skb) ;
43 }

Listing 4: SDN-GCC Rate Limiter Handler

1 / / R e c e i v e r P a c k e t Hand le r
2 vo id sdngcc_receive (sk_buff ∗skb , vport ∗inp ,vport ∗outp ,sw_flow_key ∗key)
3 {
4 i n t m ,n ;
5 identify_devices (inp ,outp , &m,&n) ;
6

7 / / Handle S p e c i a l IP f e e d b a c k message
8 i f (ip_header−>protocol == FEEDBACK_PACKET_IPPROTO)
9 {

10 mark_count = ntohs (ip_header−>id) ;
11 track_reverse_key_extract (skb , &track_key) ;
12 flow = track_tbl_lookup(&track_key , s i z e o f (track_key)) ;
13 i f (flow)
14 {
15 flow−>mark_packet_count += mark_count ;
16 flow−>mark_lastfeedback = jiffies ;
17 }
18 kfree_skb (skb) ;
19 r e t u r n ;
20 }
21 }

Listing 5: SDN-GCC Receiver Packet Handler

Below are the main procedures that constitute the SDN-GCC SDN Controller implementation in Python programming
language. We show here the switch features function which at start-up reads out switch configuration when it registers with the
controller for first time. Also, we present the install miss table which handles the rules to be inserted whenever a miss-event
happens at the switches. switch ports function reads out switch’s ports names and store them in a table for accounting the
congestion per port. SendIp function is the core of our controller which sends Raw IP packets to the SDN-GCC modules to
inform them of the amount of marking and hence throttle back the mis-behaving flows. add flow is the function that handles
add custom flow requests other than the normal forwarding rule inserted by the table miss function. Finally, packet in function
handles all packets that switches can not handle and sent to the controller as PACKET IN message for consulting controller’s
action about it3.

1 / / Read s w i t c h f e a t u r e s a t s t a r t up Hand le r
2

3 def switch_features_handler (self , ev) :
4 ” ” ” Handle s w i t c h f e a t u r e s r e p l y t o i n s t a l l t a b l e miss f low e n t r i e s . ” ” ”
5 global maindpid
6 dpid = ev .msg .datapath_id
7 #datapath = ev .msg .datapath
8 #[self .install_table_miss (datapath , n) f o r n in [0 , 1]]
9

10 self .dstsrc_iptable .setdefault (dpid , {})
11 self .port_marks .setdefault (dpid , {})
12 self .port_totalmarks .setdefault (dpid , {})
13 self .ip_to_port .setdefault (dpid , {})

3SDN-GCC OpenvSwitch module and the SDN controller consists of other functions and data structures which were not shown for the brevity purposes.
For the complete source code or the patch, please contact one of the authors

11

14 self .mac_to_port .setdefault (dpid , {})
15 self .dstsrc_table .setdefault (dpid , {})
16 self .port_num_to_name .setdefault (dpid , {})
17 maindpid = dpid
18 self .getswitchports (dpid)

Listing 6: SDN-GCC switch feature

1 # s e t up r u l e s f o r t a b l e miss
2

3 def install_table_miss (self , datapath , table_id) :
4 ” ” ” C r e a t e and i n s t a l l t a b l e miss f low e n t r i e s . ” ” ”
5 parser = datapath .ofproto_parser
6 ofproto = datapath .ofproto
7 empty_match = parser .OFPMatch ()
8 output = parser .OFPActionOutput (ofproto .OFPP_NORMAL)
9 write = parser .OFPInstructionActions (ofproto .OFPIT_WRITE_ACTIONS , [output])

10 instructions = [write]
11 flow_mod = self .create_flow_mod (datapath , 0 , 0 , 0 , table_id , empty_match , instructions)
12 datapath .send_msg (flow_mod)

Listing 7: SDN-GCC table miss rule

1 # Get p o r t i n f o r m a t i o n from t h e s w i t c h
2

3 def getswitchports (self , dpid) :
4 ” ” ” g e t p o r t i n f o r m a t i o n from s w i t c h ha v in g i d o f dp id . ” ” ”
5 global mainport ,searchstr
6 p = system .getports (sw)
7 str1 = StringIO (p .stdout .read ())
8 ports = np .genfromtxt (str1 , usecols= (0 , 1) , delimiter= ’ ’ , dtype=None , unpack=False)
9 f o r port in ports :

10 #print port [0] , port [1]
11 self .port_num_to_name [dpid] [port [0]] = port [1]
12 print self .port_num_to_name [dpid]
13

14 f o r port in self .port_num_to_name [dpid] :
15 portname = self .port_num_to_name [dpid] [port]
16 str1= str1 .parseandextract ()
17 i f portname == ’ p1p2 ’ :
18 mainport=port
19 searchstr=str1
20 print str1
21 p = subprocess .Popen (” s s h roo t@swi t ch %s ” % str1 , shell=True , stdout=subprocess .PIPE)
22 string = StringIO (p .stdout .read ())
23 marks=0
24 t r y :
25 marks= i n t (string .getvalue ())
26 except ValueError :
27 pass
28 print port , ” : ” , portname , ” marked=” , marks

Listing 8: SDN-GCC switch port information

1 # Send o u t mark ings seen by t h e c o n t r o l l e r
2 def sendip (self , dstip , srcip , payload=0) :
3 ” ” ” Send raw IP p a c k e t on i n t e r f a c e . ” ” ”
4

5 #create a raw socket
6 t r y :
7 s = socket .socket (socket .AF_INET , socket .SOCK_RAW , socket .IPPROTO_RAW)
8 except socket .error , msg :
9 print ’ S oc ke t c o u l d n o t be c r e a t e d . E r r o r Code : ’ + str (msg [0]) + ’ Message ’ + msg [1]

10 sys .exit ()
11

12

12 # tell kernel n o t to put in headers , since we are providing it , when u s i n g IPPROTO_RAW t h i s is n o t ←↩
necessary

13 # s .setsockopt (socket .IPPROTO_IP , socket .IP_HDRINCL , 1)
14

15 # now start constructing the packet
16 packet = ’ ’ ;
17

18 # ip header fields
19 ip_ihl = 5
20 ip_ver = 4
21 ip_tos = 0
22 ip_tot_len = 0 # kernel will fill the correct total length
23 ip_id = min (65535 , payload) #Id of t h i s packet is the number of marks 54321
24 ip_frag_off = 0
25 ip_ttl = 255
26 ip_proto = 143
27 ip_check = 0 # kernel will fill the correct checksum
28 ip_saddr = socket .inet_aton (srcip) #Spoof the source ip address i f you want to
29 ip_daddr = socket .inet_aton (dstip)
30

31 ip_ihl_ver = (ip_ver << 4) + ip_ihl
32

33 # the ! in the pack format string means network order
34 ip_header = pack (’ !BBHHHBBH4s4s ’ , ip_ihl_ver , ip_tos , ip_tot_len , ip_id , ip_frag_off , ip_ttl , ←↩

ip_proto , ip_check , ip_saddr , ip_daddr)
35

36 # final full packet − syn packets dont have any data
37 packet = ip_header #+ payload
38 #print datetime .now () , ’−> Sen t marking p a c k e t t o : ’ , dstip , ’ message : ’ , packet
39

40 #Send the packet finally − the port specified has no effect
41 s .sendto (packet , (dstip , 0)) # put t h i s in a loop i f you want to flood the target
42 s .close ()
43 #print ’ Sen t marking p a c k e t t o : ’ , dstip , ’ from : ’ , srcip , ’ w i th marking = ’ , payload
44

45 def check_connections (self) :
46 global pipebuffer , RTT , totalmarks , searchstr
47

48 i f searchstr == ’ ’ :
49 Timer (sampleinterval , self .check_connections , ()) .start ()
50 r e t u r n
51 p = subprocess .Popen (” s s h roo t@swi t ch %s ” % searchstr , shell=True , stdout=subprocess .PIPE)
52 string = StringIO (p .stdout .read ())
53 currentmarks=0
54 t r y :
55 currentmarks= i n t (string .getvalue ())
56 except ValueError :
57 pass
58 marks = max (0 , currentmarks − totalmarks)
59 #print ’ c h e c k i n g RED a t ’ , datetime .now () , ’ marks : ’ , marks
60 i f marks > 0 :
61 # f o r dpid in self .ip_to_port :
62 # f o r dst in self .ip_to_port [dpid] . keys () :
63 #print ’ c h e c k i n g RED a t ’ , datetime .now () , ’ marks : ’ , marks , ’ p o r t : ’ , self .ip_to_port [dpid] [dst] , ←↩

’ : ’ , mainport
64 # i f self .ip_to_port [dpid] [dst] == mainport :
65 dstnum = len (dstlist)
66 totalsrc = 0
67 f o r dst in dstlist :
68 srclist = [src f o r (src , dst_) in self .dstsrc_iptable .get (maindpid) .items () i f dst_ == dst]
69 totalsrc = totalsrc + len (srclist)
70 i f totalsrc > 0 :
71 f o r dst in dstlist :
72 srclist = [src f o r (src , dst_) in self .dstsrc_iptable .get (maindpid) .items () i f dst_ == dst]
73 srcnum = len (srclist)
74 print datetime .now () , ’ p o r t : ’ , mainport , ’ c au s ed ECN −> d s t : ’ , dst , ’ s r c : ’ , srclist , ’ ←↩

t o t a l m a r k s : ’ , totalmarks , ’ newmarks : ’ , marks
75 i f srcnum > 0 :
76 amount = marks / srcnum #totalsrc
77 f o r src in srclist :

13

78 self .sendip (src , dst , amount)
79 totalmarks = currentmarks
80 Timer (sampleinterval , self .check_connections , ()) .start ()

Listing 9: SDN-GCC Marking Notification

1 #Add f low f u n c t i o n
2 def add_flow (self , datapath , in_port , dst , actions) :
3 ofproto = datapath .ofproto
4

5 match = datapath .ofproto_parser .OFPMatch (
6 in_port=in_port , dl_dst=haddr_to_bin (dst))
7

8 mod = datapath .ofproto_parser .OFPFlowMod (
9 datapath=datapath , match=match , cookie=0 ,

10 command=ofproto .OFPFC_ADD , idle_timeout=0 , hard_timeout=0 ,
11 priority=ofproto .OFP_DEFAULT_PRIORITY ,
12 flags=ofproto .OFPFF_SEND_FLOW_REM , actions=actions)
13 datapath .send_msg (mod)

Listing 10: SDN-GCC Add flow to switch flow table

1 # Handle In−P a c k e t s t h a t miss f low t a b l e s i n t h e s w i t c h e s
2 @set_ev_cls (ofp_event .EventOFPPacketIn , MAIN_DISPATCHER)
3 def _packet_in_handler (self , ev) :
4 msg = ev .msg
5 datapath = msg .datapath
6 ofproto = datapath .ofproto
7 in_port = msg .in_port
8 dpid = datapath .id
9

10 pkt = packet .Packet (data=msg .data)
11 eth = pkt .get_protocol (ethernet .ethernet)
12

13 i f eth .ethertype == ether_types .ETH_TYPE_LLDP : # o r eth .ethertype != ether_types .ETH_TYPE_IP or ←↩
eth .ethertype != ether_types .ETH_TYPE_ARP :

14 # ignore lldp packet
15 r e t u r n
16 dst = eth .dst
17 src = eth .src
18

19 dstip=” ”
20 srcip=” ”
21 t r y :
22 ip = pkt .get_protocol (ipv4 .ipv4)
23 arph = pkt .get_protocol (arp .arp)
24 i f ip is None and arph is None :
25 r e t u r n
26 i f ip is n o t None :
27 dstip = ip .dst
28 srcip = ip .src
29 i f n o t srcip or srcip == ’ 2 5 5 . 2 5 5 . 2 5 5 . 2 5 5 ’ : # o r n o t dstip or dstip == ’ 2 5 5 . 2 5 5 . 2 5 5 . 2 5 5 ’ :
30 r e t u r n
31 #print ip
32

33 elif arp is n o t None :
34 dstip = arph .dst_ip
35 srcip = arph .src_ip
36 i f n o t srcip or srcip == ’ 2 5 5 . 2 5 5 . 2 5 5 . 2 5 5 ’ o r n o t dstip or dstip == ’ 2 5 5 . 2 5 5 . 2 5 5 . 2 5 5 ’ :
37 r e t u r n
38 #print arph
39

40

41 # i f self .dstsrc_iptable [dpid] . get (dstip , None) is None :
42 # self .dstsrc_iptable [dpid] [dstip]=0
43 self .dstsrc_iptable [dpid] [srcip]=dstip
44

14

45 # i f self .ip_to_port [dpid] . get (srcip , None) is None :
46 # self .ip_to_port [dpid] [srcip]=0
47 self .ip_to_port [dpid] [srcip] = msg .in_port
48

49 i f msg .in_port == mainport and srcip is n o t None :
50 i f srcip n o t in dstlist :
51 dstlist .append (srcip)
52

53 i f self .port_marks [dpid] . get (msg .in_port , None) is None :
54 self .port_marks [dpid] [msg .in_port]=0
55

56 i f self .port_totalmarks [dpid] . get (msg .in_port , None) is None :
57 self .port_totalmarks [dpid] [msg .in_port]=0
58

59 #print ’ s r c i p : ’ , srcip , ’ s rcmac : ’ , src , ’ d s t i p : ’ , dstip , ’ ds tmac : ’ , dst , ’ por tnum : ’ , msg .in_port
60

61 i f self .timeron == False :
62 print ’ t i m e r s t a r t e d a t ’ , datetime .now ()
63 Timer (sampleinterval , self .check_connections , ()) .start ()
64 self .timeron=True
65

66 except msg :
67 print ’ Not an IP p a c k e t E r r o r Code : ’ + str (msg [0]) + ’ Message ’ + msg [1]
68 r e t u r n
69

70 i f self .dstsrc_table [dpid] . get (dst , None) is None :
71 self .dstsrc_table [dpid] [dst]=0
72 self .dstsrc_table [dpid] [src]=dst
73

74 # learn a mac address to avoid FLOOD next time .
75 self .mac_to_port [dpid] [src] = msg .in_port
76

77

78 i f self .port_num_to_name [dpid] . get (msg .in_port , None) is None :
79 self .port_num_to_name [dpid] [msg .in_port]=None
80

81 i f dst in self .mac_to_port [dpid] :
82 out_port = self .mac_to_port [dpid] [dst]
83 e l s e :
84 out_port = ofproto .OFPP_FLOOD
85

86 actions = [datapath .ofproto_parser .OFPActionOutput (out_port)]
87

88 # install a flow to avoid packet_in next time
89 i f out_port != ofproto .OFPP_FLOOD :
90 self .add_flow (datapath , in_port , dst , actions)
91

92 data = None
93 i f msg .buffer_id == ofproto .OFP_NO_BUFFER :
94 data = msg .data
95

96 out = datapath .ofproto_parser .OFPPacketOut (
97 datapath=datapath , buffer_id=msg .buffer_id , in_port=in_port ,
98 actions=actions , data=data)
99 datapath .send_msg (out)

Listing 11: SDN-GCC Handle In-Packet arrival

7 Testbed implementation of SDN-GCC
We implemented SDN-GCC Control APP as a separate application program in python programming language for any python-
based controllers (i.e, Ryu [7] SDN framework in our testbed). We have also patched the Kernel datapath module of Open-
vSwitch (OvS) [21] with SDN-GCC shim-layer4. We added the token-bucket rate limiters and the congestion message handler
(i.e, the shim-layer) in the packet processing pipeline in the datapath of OvS. In a virtualized environment, OvS forwards the

4OpenStack along with other popular cloud and virtualization management software use OpenvSwitch as their end-host (hypervisor) networking layer

15

traffic for inter-VM, Intra-Host and Inter-Host communications5. This leads to an easy and straightforward way of deploying
the shim-layer at the end-hosts by only applying a patch and recompiling the OvS module, introducing minimal impact on the
operations of production DC networks with no need for a complete shutdown. Specifically, deployment can be carried out by
the management software responsible for admission and monitoring of the data center, to all servers in the DC network.

Rack 1 Rack 2 Rack 3

Core

ToR

Rack 4

Controller

Bottleneck
Control

Figure 5: A real testbed for experimenting with SDN-GCC framework

We set up a testbed as shown in Fig. 5. All machines’ internal and the outgoing physical ports are connected to the patched
OvS. We have 4 racks of 7 servers each (rack 1, 2 and 3 are senders and rack 4 is receiver) all servers are installed with
Ubuntu Server 14.04 LTS running kernel version (3.16) and are connected to the ToR switch through 1 Gb/s links. Similarly,
the machines are installed with the iperf [12] program for creating elephant flows and the Apache web server hosting a single
webpage ”index.html” of size 11.5KB for creating mice flows. We setup different scenarios to reproduce both incast and
buffer-bloating situations with bottleneck link in the network as shown in Fig. 5. Various iperf and/or Apache client/server
processes are created and each is associated with its own virtual port on the OvS at the end-hosts. This allows us to create
scenarios with large number of flows in the network to emulate a data center with many co-existing VMs running various
applications. In the experiments we have set the controller monitoring interval to a conservative value of 300 ms whereas the
network RTT ranges from 300µs without queuing and up to 1-2 ms with excessive queuing.

We run a scenario in which TCP and UDP elephant flows are competting for bandwidth in addition to a by-passing burst of
mice TCP traffic which competes with them for a short-period of time to see if SDN-GCC can manage efficiently the traffic of
various application. We first generate 7 synchronized TCP iperf flows and another 7 synchronized UDP iperf flows from each
sending rack for 20 secs resulting in 42 (2×7×3 = 42) elephants at the bottleneck. At the 10thsec, We use Apache Benchmark
[4] to request ”index.html” webpage (10 times) from each of the 7 web servers on each sending rack (7 × 6 × 3 = 126 in
total). Figs. 6a and 6b show that the TCP elephants are able to grab their share of bandwidth regardless of the existence
of non-well-behaved UDP traffic. In addition, Fig. 6c and ?? suggests that, the mice flows still benefit from SDN-GCC by
achieving a smaller and nearly smooth (equal) flow completion time on average with a smaller standard deviation which further
demonstrates SDN-GCC’s effectiveness in apportioning the bandwidth.

To summarize this simulation and experimental study, SDN-GCC seems to be able to efficiently allocate the bandwidth
among various flow types and alleviate possible congestion in network core.

8 Related Work
SDN-GCC can be considered as comparable or complementary work to a number of recent proposals designed for cloud
resource allocation. [24] designed a system called “Seawall” for sharing network bandwidth, which achieves per-VM max-
min weighted allocations using explicit end-to-end feedback messaging for rate adaptation. Seawall requires introduction of
new protocol to network stack which incurs a large processing and messaging overhead and may not be middlebox-friendly.
Authors of [10] designed “Secondnet” to divide network among tenants and enforce rate limits, but is limited to static bandwidth
reservation among tenants’ VMs. EyeQ [15] provides per-VM max-min weighted fair shares in the context of a full bisection
bandwidth datacenter topology where congestion By leveraging simple rate limiters and incorporating network-aware SDN
controller to build dynamic adaptive system, SDN-GCC is able to achieve similar design goals of these proposals in a more

5Due to recent advancement of memory speeds, the throughput of internal forwarding (i.e, OvS) of commercial desktop/server is 50-100 Gb/s, which is fast
enough to handle 10’s of concurrent VMs sharing a single or few physical links. Hence, we believe that the overhead of the shim-layer functions added to the
OvS would not hog the CPU and hence the achievable throughput.

16

0 5 10 15 20 25 30
Elpehant Goodput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

RED-ECN

SDN-GCC

(a) Average TCP throughput

10 15 20 25 30 35 40 45 50
Elpehant Goodput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

RED-ECN

SDN-GCC

(b) Average UDP throughput

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Average Response Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

RED-ECN

SDN-GCC

(c) AVG of FCT for mice

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Response Time variance (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

RED-ECN

SDN-GCC

(d) SD of FCT for mice

Figure 6: Testbed scenario where 126 mice competing with 21 TCP and 21 UDP elephants

intuitive and less deployment, CPU, network overhead manner. The essence of SDN-GCC is to address the increasing trend
and shift to SDN infrastructures while traditional transport protocols is still in use in current production datacenters.

9 Conclusion and future work
In this paper, we set to build a system that relies of the pervasive availability of SDN capable switches in datacenters to provide
a centralized congestion control mechanism with a small deployment overhead onto production data centers. Our system
achieves better bandwidth isolation and improved application performance. SDN-GCC is a SDN framework that can enforce
efficient network bandwidth allocation among competing VMs by employing simple building blocks such as rate limiters at the
hypervisors along with an efficient SDN APP. SDN-GCC is designed to operate with low overhead, on commodity hardware,
and with no assumption of tenant’s cooperation which makes a great composition for the deployment in SDN-based datacenter
networks. SDN-GCC was shown via simulation analysis that it can efficiently divide network bandwidth across active VMs
by enforcing target rates regardless of transport protocol in use. Finally, further evaluation of SDN-GCC in a large data center
simulations and real testbed experiments with more complex scenarios is part of our ongoing work.

17

References
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. In Proceedings of

ACM SIGCOMM, 2008.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data center
TCP (DCTCP). ACM SIGCOMM CCR, 40:63, 2010.

[3] Amazon. AWS Virtual Private Cloud (VPC). http://aws.amazon.com/vpc/.

[4] Apache.org. Apache HTTP server benchmarking tool. http://httpd.apache.org/docs/2.2/programs/ab.html.

[5] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards predictable datacenter networks. ACM SIGCOMM CCR,
41(4), 2011.

[6] T. Benson, A. Akella, A. Shaikh, and S. Sahu. Cloudnaas: A cloud networking platform for enterprise applications. In
Proceedings of ACM Symposium on Cloud Computing, 2011.

[7] R. S. F. Community. Ryu: a component-based software defined networking framework. http://osrg.github.io/ryu/.

[8] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, and J. E. van der Merive. A flexible model for
resource management in virtual private networks. In Proceedings of ACM SIGCOMM, 1999.

[9] B. A. Greenberg, J. R. Hamilton, S. Kandula, C. Kim, P. Lahiri, A. Maltz, P. Patel, S. Sengupta, A. Greenberg, N. Jain,
and D. A. Maltz. VL2: a scalable and flexible data center network. In Proceedings of ACM SIGCOMM, 2009.

[10] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang. Secondnet: A data center network
virtualization architecture with bandwidth guarantees. In 6th CoNext Conference, 2010.

[11] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wattenhofer. Achieving high utilization with
software-driven wan. In Proceedings of ACM SIGCOMM, 2013.

[12] iperf. The TCP/UDP Bandwidth Measurement Tool. https://iperf.fr/.

[13] S. M. Irteza, A. Ahmed, S. Farrukh, B. N. Memon, and I. A. Qazi. On the coexistence of transport protocols in data
centers. In Proceedings of IEEE ICC, 2014.

[14] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla,
U. Hölzle, S. Stuart, and A. Vahdat. B4: Experience with a globally-deployed software defined wan. In Proceedings of
ACM SIGCOMM, 2013.

[15] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, C. Kim, and A. Greenberg. Eyeq: Practical network performance
isolation at the edge. In 10th USENIX NSDI Conference, 2013.

[16] G. Judd. Attaining the promise and avoiding the pitfalls of TCP in the datacenter. In Proceedings of 12th NSDI, 2015.

[17] A. M. Abdelmoniem, B. Bensaou, and A. J. Abu. HyGenICC: hypervisor-based generic IP congestion control for virtual-
ized data centers. In Proceedings of IEEE ICC, 2016.

[18] R. Nishtala, H. Fugal, and S. Grimm. Scaling memcache at facebook. Proceedings of 10th USENIX NSDI, 2013.

[19] NS2. The network simulator ns-2 project. http://www.isi.edu/nsnam/ns.

[20] Open Networking Foundation. SDN Architecture Overview. Technical report, Open Networking Foundation, Dec 2013.

[21] OpenvSwitch. Open Virtual Switch project. http://openvswitch.org/.

[22] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker. CAP for networks. In ACM HotSDN workshop, 2013.

[23] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley. Improving datacenter performance and
robustness with multipath TCP. In Proceedings of the ACM SIGCOMM, 2011.

[24] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Sharing the data center network. In Proceedings of the 8th
USENIX NSDI Conference, 2011.

[25] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast congestion control for TCP in data-center networks. IEEE/ACM
Transactions on Networking, 21, 2013.

18

	Introduction
	Transport Isolation Problem
	Proposed Methodology
	Design and Implementation
	SDN-GCC Shim-Layer
	SDN-GCC APP
	Implementation and Practical Issues

	Simulation Analysis
	Simulation Setup
	Simulation Results and Discussion

	Implementation Details of SDN-GCC framework
	Testbed implementation of SDN-GCC
	Related Work
	Conclusion and future work

