Incast-Aware Switch-Assisted TCP Congestion
Control for Data Centers

Ahmed M. Abdelmoniem and Brahim Bensaou
Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
{amas, brahim} @cse.ust.hk

Abstract—Due to the partition/aggregate nature of many
cloud applications, incast traffic is preponderant in data center
networks (DCNs). Because TCP is agnostic to this composite
nature of the applications traffic and their quality of service
requirements, a few congestion events often degrade significantly
the user perceived quality of service. This is exacerbated by the
co-existence of such incast traffic with other elastic traffic flows in
the network. In this paper we address the congestion problems of
incast traffic and its interaction with other elastic traffic in DCNs.
We propose a switch-assisted TCP congestion control via some
small modifications to the switch software that do not require
any modification to the TCP protocol nor to the TCP sender or
receiver logic. We assess the performance of the proposed scheme
via ns2 simulation as well as a real deployment in a small-scale
testbed'.

Keywords—Congestion Control, Data Center Networks, Incast,
TCP.

I. INTRODUCTION

Data center networks (DCNs) carry the traffic of a plethora
of applications with various traffic characteristics and per-
formance requirements, ranging from a multitude of barrier-
synchronized, short-lived, time-sensitive flows (called in the
sequel ants) to long-lived, time-insensitive, bandwidth-inclined
flows such as backups and virtual machine migration (referred
in the remainder as elephants). Recent measurements [1, 2]
have shown that in practice DCNs abound with ant type of
applications that lead to incast traffic. They can be encountered
in i) data-intensive processing systems such as MapReduce
[3] used by web-search, e-commerce, and social networks
applications. Such systems handle huge amounts of data by
concurrently processing them across many servers. Hence,
many-to-many or many-to-one data transfers take place between
processing nodes; ii) distributed file systems where large
amount of data are stored in many distributed storage nodes,
such as BigTable. When a client retrieves data, parallel access to
some of these distributed nodes is needed; and, iii) large-scale
web applications where every requested service is broken into
parallel tasks assigned to worker nodes. The responses from
these workers are collected by an aggregation node that finally
produces the final result. .

DCNs are structured to provide a high bandwidth and low
latency networking environment. To this end, and for cost
considerations, Ethernet switches with small buffers (instead

'This work is supported in part under Grants: HKPFS PF12-16707,
RECI4EGO03 and FSGRF13EG14

of routers with large buffers) are used for interconnecting the
servers. In the presence of such small buffers, the sudden surge
of synchronized incast traffic often results in congestion events
which are exacerbated by the presence of elephant traffic in
the same buffer. Such complex congestion events are shown
in recent works [2, 4] to be inadequately handled by TCP,
as it is agnostic to the quality of service requirements of ant
traffic flows as well as the composite nature of the application
data. Yet most applications in DCN still rely on TCP for data
transport.

To address such congestion problems in DCNSs, recent work
has mainly been devoted to modifying TCP to overcome its
shortcomings: [S5] observed that there was a mismatch between
TCP timeout timers in the hosts and the actual round-trip
times (RTTs) experienced in DCNs. Typically, when incoming
data overflows the small switch buffers, TCP timeouts that
last hundreds of milliseconds occur. Due to the design of
TCP timeout in most operating systems a latency-sensitive
applications that suffers a timeout would have to wait for
several hundred RTTs before it can retransmit its data>. The
proposed solution in [5] consists simply in modifying TCP
stack by using high-resolution timers to enable microsecond-
granularity in TCP timeouts. This technique was shown to
effectively avoid TCP incast collapse. The so-called DCTCP
[4] adopts TCP-AQM as a means to controlling congestion
problems in DCNs. DCTCP modifies TCP congestion window
adjustment function to maintain a high bandwidth utilization
and sets RED’s parameters to a small threshold to achieve
a small queue length (and thus a short queueing delay). It
is shown in [4] that DCTCP can achieve small delays for
ants traffic without degrading the link utilization. Nevertheless,
DCTCP requires the modification of both TCP sender and TCP
receiver algorithms.

ICTCP [2] also proposed a modification to TCP receiver to
handle incast traffic. ICTCP adjusts the TCP receiver window
proactively, before packets are dropped. The experiments with
ICTCP in a real testbed show that ICTCP can almost curb
timeouts and achieves a high throughput for TCP incast traffic.
Unfortunately, ICTCP does not address the impact of buffer
build up issue caused by the co-existence of elephants in the
same buffer as the ants. Furthermore, it is effective only if the
incast congestion happens at the destination node and finally it
also requires changes to the TCP receiver algorithm. Overall,

2For example the Linux implementation sets the minimum timeout to 200
millisecond whereas the RTT in a data center ranges typically from a few tens
to a few hundred microseconds

the good results achieved by these prior works are compelling
evidence that there is a need for a better way to handle
congestion events in DC networks. However, we argue that
modifying the TCP protocol and/or the TCP sender or receiver
logic is only applicable to small scale private data centers:
in most today’s public clouds, tenants can upload their own
operating system images to their virtual machines. In addition in
many instances of applications, the TCP sender and/or receiver
are/is outside the cloud and under the total control of the tenant.
Our target in this paper is to build a solution to the incast
problem that has the following requirements: (R1) it should
handle effectively the problem of incast traffic congestion by
improving the incast flow completion time; (R2) it should not
dramatically degrade the throughput of elephant flows; (R3) it
should not require modification to the TCP sender, nor to the
receiver. Any required modification must be in devices that are
fully under the control of the DCN operator; (R4) and finally
it must be simple enough to be prone to deployment in a real
system.

With this objective in mind, we adopt a switch-based
approach where the switch actively monitors the occurrence of
incast traffic and proactively intervenes, whenever congestion
events are forecast, in order to enable ant traffic to pass with
minimal congestion. To avoid modifying the existing source
and receiver algorithms, our switch uses the TCP flow control
window field in the packet headers in a cross-layer approach to
temporarily quench the sending rates of elephants without
reducing their congestion window sizes, enabling them to
recover their sending rates immediately after the incast traffic
has avoided congestion.

In the remainder of this paper, we will first discuss our
proposed methodology in Section II then present our switch
queue management algorithm and discuss it in Section III. We
will first evaluate our algorithm via ns2 simulation in Section
IV to compare it to alternative approaches, then in Section V
we discuss our implementation and evaluation in a small-scale
testbed. We finally conclude the paper in VI

II. BACKGROUND AND PROPOSED METHODOLOGY

A very high level explanation of the rationale of our pro-
posed incast queue management (IQM) algorithm is illustrated
in Fig. 1. Considering the persistent queue length in a switch
buffer during a measurement period of length T; to be Q(T5), if
during the period of time a volley of N new TCP connections
are established (i.e., N TCP SYN packets are seen), it is
expected that in the next period T;1, the queue length Q(T;11)
is not more than Q(T;) + N * z x M SS bytes, where x is the
initial window size of TCP in segments. Since incast traffic
is ephemeral, the persistent queue is mainly due to elephant
flows (or a complex pattern of incast flows arrivals), as a result,
IQM measures the number of new flows N by the end of each
time interval T;, and if it predicts the queue length Q(T;11)
to reach a congestion threshold in the next interval 7} then
it throttles all the ongoing flows to a sending rate of 1 MSS
per RTT each in the next intervals, achieving thus short term
fairness between all flows (ants and elephants) and meeting
requirement (R1).

In principle, since the TCP source rate is determined by the
sending window [6] Swnd which is the minimum of receiver

Figure 1: IQOM Rationale: Assuming the queue stable at RTT i, if
a volley of N SYN packets is measured in RTT i, it is
expected in the worst case that in the next RTT N % x new
segments of size MSS will be added to the queue

window Rwnd , and the congestion Cwnd , and since Cwnd is
normally at least equal to 1 MSS, to meet requirement (R3), the
switch can rewrite the receiver window field in the TCP ACK
headers as a means to throttling the sender rate to 1 MSS per
RTT. However this requires the TCP ACKs to travel along the
reverse path of the TCP data segments. This can be achieved
by invoking software defined networking (SDN) and Openflow
as they provide the ability to implement flow-aware forwarding
to set the forward and reverse flow along the same path. SDN
also provides statistics on the ongoing number of flows and
the queue occupancy for each switch port.

Throttling all flows sending rates to a single segment per
RTT will have the immediate effect of dropping the queue
length dramatically below the congestion threshold (if the
persistent queue was due to a few elephants), as a result, since
incast traffic is ephemeral, to meet requirement (R2), Rwnd
rewriting would stop after only a few time intervals as soon
as the ants finish their transmission, which enables ongoing
elephants to recover their previous sending rate (since Rwnd is
still the same). To meet requirement (R4), instead of tracking
individual flow states to estimate accurately the queue length
in the next interval, the switch can use rough estimates by
simply counting the number N of segments with a SYN bit set
less the number of segments with the FIN bit set; this in the
worst case results in a conservative estimate of the expected
queue length. Without loss of generality, in the sequel we will
consider the value of x to be 1 MSS.

3

Set
SDN Forwarding
Controller rules

ToR
switches

Intercept Ingress/
SYN/FIN Egress
Router

Data Center

Figure 2: SDN based implementation scenario of flow-aware network

Figure 2 illustrates a possible implementation scenario of
our proposed mechanism. All switches in the DC are SDN-
enabled, the controller controls all the switches in the DC and
sets rules in the ingress/egress router as well as all top of rack

(ToR) switches to intercept any TCP SYN segments. As a result,
the controller is able to track TCP connections and to pin-down
forward and reverse paths by setting new forwarding rules (or
merging them in existing aggregates) in the DCN switches.
By also intercepting the FIN segments in the ingress/egress
router and ToR switches, the controller is also able to withdraw
routing rules from the switches as necessary. Each of the DC
switches must run our IQM algorithm to update the receiver
window field in the ACK headers as they cross the switch on
the reverse path.

III. INCAST-AWARE QUEUE MANAGEMENT ALGORITHM

The main variables and parameters used in the IQM
algorithm are described in Table I. Notice that T; and « are
parameters of the algorithm that can be chosen by the DC
administrator. As a rule of thumb, 7; should be larger than 1
RTT.

Table I: Variables and Parameters used in Algorithm 1

Parameter name Description
T; Timeout value for Incast monitoring interval
« No-Incast queue length threshold
Variable name Description
5 Coarsely estimated differential of new connections
Qlen Current length of the output queue
Qrimit buffer size on the forward path
P a packet
Rwnd(P) Receiver window field in packet P

A. IOM algorithm

Algorithm 1 IQM Algorithm (as an event handler)
1: switch (EVENT)
2: case Packet_Arrival(P):
3: if Max_Size < Size(P) then

4: Mazx_Size < Size(P)
5. end if

6: if SYN_bit_set(P) then

7: B+ p+1

8: end if

9: if FIN_bit_set(P) then

10: B+ MAX(0,8—1)

11: end if

12: if ACK_bit_set(P) and Incast_flag then
13: Ruwnd(P) < Max_Size
14: end if

15: case Incast_Detection_Timeout:

16: if Qren < @ X Qimir then

17: Incast_flag < false

18: end if

19: Extra_traf fic + B x Initial_CWND + Qen
20: if Extra_traf fic > Qimi: then

21: Incast_flag < true

22: end if

23: 3 < 0; Restart Incast detection timer T;

24: end switch

IQM algorithm shown in Algorithm 1 is an event-driven
mechanism which extends the simple drop-tail queue manage-
ment with two major event handlers: packet arrivals and incast
detection timer expiry to trigger window updates.

1) Upon a packet arrival: the maximum segment size seen
so far is updated. If this is a SYN packet for establishing
a new TCP connection, then the current value of (5 is
incremented, and if this is a FIN packet for closing an
established TCP connection, then 3 is decremented. If
the ACK bit is set, the receive window of the Packet
is overwritten with 1 MSS worth of bytes whenever the
incast flag is set.

2) Upon elapse of the incast detection timer:
Ezxtra_traf fic indicates the minimal number of
extra bytes that will be introduced into the network by
the B new and existing connections. Typically each of the
sampled new connections starts by sending a full initial
congestion window worth of bytes into the network while
existing ones will maintain the same persistent queue. If
the buffer is expected to overflow in the next interval,
then we need to take a fast proactive action to make
room for the forthcoming incast traffic, by setting the
receive window of passing ACKs in the backward-path to
a conservative value of 1 MSS. This will ensure to some
extent that the short query traffic (1-10KB) flows will
not experience packet drops and hence will not incur the
waiting time for retransmission timeout. The incast flag
is cleared as soon as the queue length drops below the
predetermined threshold enabling thus elephant flows to
re-use their previous congestion window values.

Notice that in our algorithm the incast flag tracks imminent
congestion rather than incast events per se. But as a by-product
it handles incast traffic surges quite well. Indeed, the incast
flag can be set because a volley of incast packets is about to
arrive and is deemed to lead the buffer to overflow, or the
buffer was almost full and a few new arriving (not necessarily
incast) flows would lead the buffer to overflow. In both cases
our algorithm throttles all ongoing flows to 1 MSS to drain
the queue.

B. Practical aspects of IQM Algorithm

IQM maintains a very low loss rate during incast events and
enables the switch buffers to absorb sudden traffic surges while
maintaining a high utilization. Therefore it is appealing for
handling the co-existence of ants and elephants. IQM adopts
a proactive recovery actions in face of the forecast incast
information. As soon as the incoming traffic gives indication of
overflowing the buffer, the receive window is shrunk drastically
to 1 MSS. Furthermore the new window is equally applied to
all ongoing flows meaning that all flows (ants or elephants) will
receive an equal treatment during incast periods. As soon as,
the incast traffic, which is short-lived, finishes and leaves the
network indicated by the queue occupancy dropping back to less
than the predetermined threshold, the elephants immediately
restore their previous sending rates by disabling receive window
setting to 1 MSS. This typically means during their short
existence, incast flows will compete fairly with the elephants
and afterwards the elephants can regain their previous steady-
state sending rates.

Notice that IQM is a very simple algorithm with very low
complexity and can be integrated easily in switches or routers.
For example it can be implemented in Linux based routers
as a hook in the net-filter framework, to enable modifications
to the packet headers prior to their forwarding by IP. This

requires O(1) per packet. IQM can also cope with Internet
checksum recalculation very easily and efficiently after header
modification, by applying the following straightforward one’s-
complement add and subtract operations on three 16-bit words:
Checksumapye, = Checksumeog + Runde,, — Rwndyg [7]-
This also takes O(1) per modified packet. In addition, since
IQM is designed to deal with TCP traffic only, monitoring
SYN/SYN-ACK and FIN/FIN-ACK bits are simple per-switch-
port counters and do not require per-flow information tracking,
thus it also requires O(1). As suggested earlier this can also
be done by the SDN controller via a set of rules in the
ingress/egress and ToR switches or by the switches themselves.
Last but not least, in an SDN based DC, the forward and
backward routes can be pinned down along the same path by
the SDN controller.

All the operations required by our algorithm take O(1)
processing time and most importantly involve only the switches
and routers under the control of the DC operator. In particular,
no modification to the TCP source or receiver is needed.

Our mechanism may raise concerns related to the possibility
of being vulnerable to SYN flooding attacks [8]. In our case,
the attack would exploit how we set the receive window to 1
MSS whenever a flood of half-open SYN are counted. This
behaviour will lead the sender’s window to fluctuate each RTT
between the current Cwnd and 1 MSS. This well-known attack
can affect the operation of TCP, DCTCP and ICTCP as well,
because it is targeted towards TCP applications in general and
many proposals have suggested possible solutions to mitigate
this attack [8].

IV. SIMULATION AND PERFORMANCE ANALYSIS

In this section, we study the performance of our algorithm
via simulation in network scenarios with a low delay high
bandwidth (as is the case in data centers). We compare
our system to TCP-DropTail, TCP-RED and DCTCP and
demonstrate how it outperforms both TCP with Droptail or
RED and achieves similar performance as DCTCP without
modification to the source and receiver. For IQM, the values of
« are chosen based only on the level of queue occupancy that
signals end of incast, T; is set to be equal to the average round
trip time in the network. In the simulation experiments, we set
a to 20% of the buffer size, T; to 500 us. DCTCP parameters
are set according to the recommended settings by the authors
with K (the target queue occupancy) set to 17% of the buffer
size.

A. Simulation Setup

We used ns2 version 2.35 [9], which we have extended
with an IQM module as an inherited class of the DropTail
queue management. In addition, we modified ns2 TCP module,
since the receiver window interaction between TCP sender and
receiver (Flow Control) in ns2 does not follow the standard
TCP flow control implementation. We compare TCP NewReno
with SACK-enabled over Droptail, RED and IQM queue
management to DCTCP (which includes a modification of
TCP and AQM). For DCTCP, we use a patch for ns2.35
available from the authors [10] and for proper operation, ECN-
bit capability is enabled in the switch and TCP sender/receiver.
We use in our simulation experiments high speed links of 1

Gb/s for sending stations, a bottleneck link of 1 Gb/s, average
RTT of 500 us and MinRTO of 2 ms, as opposed to the default
200 ms, which is close to 4 times the average round trip time.

We use a dumbbell topology and run the experiments for a
period of 1 sec. The buffer size of the bottleneck link is set in
all cases to 83 packets or 125 KBytes where the IP data packet
size is 1500 bytes. We simulate two scenarios to cause incast
and buffer-bloating situations where the number of sources are
50 and 100 FTP flows respectively. In each scenario, half the
sources are elephants and the other half are ants. All sources
start at same time at the beginning and while elephants keep
sending at full link-rate during the whole simulation period,
ants who finish their flow very quickly restart sending for
another 5 epochs during the simulation. To ensure a relatively
tight synchronization between ant flows, and create an incast
traffic scenario, in each of these 5 epochs, the individual ants
start in a random order within one packet transmission time.
Each ant sends 10KBytes of data and goes to sleep until the
next epoch.

B. Simulation Results and Discussion

Fig. 3 and Fig. 4 show the distributions of the mean and
variance of the flow completion time (AFCT) for ants, the total
number of packet drops from ant flows and the goodput of
elephant flows for the two scenarios respectively.

1 1

CDF
CDF

TCP-DropTail «-+ | 02

20 25 30
Response Time (ms)

(a) Average FCT for ants

Response Time (ms)

(b) Variance of AFCT for ants

1 1

0.8 |- - 08 |-

06 |- — 06 |-

CDF
CDF

04 B 04

02 TCP-DropTail === 02 -

TCP-RED -t

! ! .
0
0 10 20 30 40 50 35 40 45 50
No. of Packets Goodput (Mb/s)

(¢) Total drops for ants (d) Average elephants goodput

0

Figure 3: Performance metrics of TCP (DropTail, RED and IQM)
and DCTCP with 50 traffic sources

According to Fig. 3a, Fig. 3b, Fig. 4a and Fig. 4b, TCP-IQM
is able to achieve a shorter AFCT compared to TCP (DropTail,
RED) and very close to what DCTCP achieves in the 50 sources
case. By increasing the traffic load to 100 sources, TCP-IQM’s
FCT improves much better than even DCTCP. This is because
with 100 TCP sources, the bandwidth-delay product plus the
buffer size result in an optimal window of 1 MSS, in this case
IQM will not exit from incast state as the queue occupancy is
always higher than 20% of the buffer size. Fig. 3¢ and Fig. 4c
show the drop rate from incast traffic with TCP-IQM to be

1

08 |-

0.6

CDF
CDF

04

02| TCP-DropTail «-+ |

TCP-RED v

0

0
30 40 50 0 100 200 300 400 500
Response Time (ms) Response Time (ms)

(a) Average FCT for ants (b) Variance of AFCT of ants

1 i T
08 </ E 08 E

06 |-

0

— 06 |-
w
a
o

CDF

04 | g 04 |

02 TCP-DropTail =+ - | 02
TCP-#

TCP-DropTail =+ -
CP-RED v ED

o
TCP-RI

0 Ly | h o b
18 20 22 24 26

Goodput (Mb/s)

(d) Average elephants goodput

No. of Packets

(¢) Total drops from ants

Figure 4: Performance metrics of TCP (DropTail, RED and IQM)
and DCTCP with 100 traffic sources

much lower than TCP-(DropTail, RED) and DCTCP in the
100 scenario. TCP-IQM can shield ant traffic from unnecessary
drops, which explains the smaller AFCT.

Fig. 3d and 4d show that the average goodput of elephants
in TCP-IQM is comparable to TCP-(DropTail, RED) and
DCTCP, which indicates that there is no effect on the long-term
throughput of these flows.

V. TESTBED IMPLEMENTATION OF IQM IN OPENVSWITCH

We further investigate the implementation of IQM as a
queue management mechanism based on simple FIFO-DropTail
in OpenvSwitch [11] for experimentation in a real-testbed. We
patched the Kernel datapath modules of OpenVSwitch with
the same functions described earlier in the IQM algorithm. We
added IQM functions in the processing pipeline of the packets
that pass through the kernel datapath module of OpenVSwitch.
In a virtualized environment, IQM-enabled OpenvSwitch can
process the traffic for inter-VM, Intra-Host and Inter-Host
communications. This is an efficient way of deploying IQM
on the host operating system of the switch by only applying a
patch and recompiling OpenvSwitch module, making it easily
deployable in today’s production DCs.

A. Testbed Setup

For experimenting with our patched OpenvSwitch, we set
up a testbed as shown in Fig. 5. All machines’ internal ports
are connected to the patched OpenvSwitch machine shown as
switch. We have 5 CentOS machines as destinations and 5
Ubuntu machines as sources all are connected to a different 1
Gb/s D-Link dumb-switch. Similarly, the machines are running
the patched OpenVswitch and an Apache web server hosting
an ”index.html” webpage of size 11.5KB. We setup different
scenarios to reproduce both incast and buffer-bloating situations
with multiple-bottleneck links in the network as shown in Fig. 5.

Recievers Master Senders

_Ii e I |
=

Switch N

Figure 5: Testbed scenario for IQM-enabled OpenvSwitch

The bottlenecks at the senders are created by creating multiple
ports on the OpenvSwitch and binding an iperf flow or an
Apache server process to each one of them.

B. Experimental Results

The goals of the experiments are to: i) show that with the
support of IQM, TCP can support many more connections and
maintain high link utilization; ii) show that with the support
of IQM, TCP can overcome incast congestion situations in the
network; iii) measure IQM’s impact on the FCT of ant flows
in incast combined with buffer-bloating situations where ants
compete with elephants.

We run an incast with buffer-bloating scenario in which
ant traffic competes with elephant flows to see if IQM can
help ant flow’s AFCT during incast period. We first generate
10 synchronized iperf [12] elephant connections continuously
sending for 30 secs from each sender resulting in 50 elephants at
link 6. We use Apache benchmark [13] to request ’index.htm]”
webpage (representing ant flows) from each of the web servers
(6 x 5 = 30 in total) running on the same machines where
elephants are sending. Note that, we run Apache benchmark, at
the 0*"sec, requesting the webpage 1000 times then it reports
different statistics over the 1000 requests. Fig. 6 shows that,
in medium load, IQM achieves a good balance in meeting the
conflicting requirements of elephants and ants. The competing
ant flows benefit under IQM by achieving a smaller FCT on
average with a smaller standard deviation compared to TCP
with DropTail as shown in Fig. 6a and Fig. 6b. In addition, as
IQM efficiently detects the incast and proactively throttles the
elephants, it can decrease the drop rate during incast events, in
Fig. 6¢c, the long-lived elephants are shown to not be affected by
IQM’s interruption of their sending rate for a very short period.
In Fig. 6d, the drops under TCP-IQM is lower than DropTail,
which helps ants avoid long timeouts of at least 200ms.

We repeat the experiment, increasing the load to 150 long-
lived elephants then introduce the 30 ants. As shown in Fig. 7,
IQM is able to satisfy the requirements of latency-sensitive ants
eventhough they are outnumbered by elephants. Fig. 7a and
Fig. 7b show that ant flows are not blocked by the bandwidth-
hogging elephants. The mean FCT and FCT variance under
IQM are much smaller than those achieved with DropTail. In
addition, Fig. 7c show that, the elephants do not suffer too much
from the proactive fairness introduced by IQM during incast
periods. From Fig. 7d it is evident that TCP with DropTail is
experiencing timeouts due to excessive packet drops which to
some extent are avoided under IQM.

CDF

CDF

(¢) Average elephant throughput

CDF

cubiclQM —

reno-IQM
cubic-DropTail ==+
rono DropTall -+

cubic-lgM — 02 -
reno-IGM /
cubic-DropTail === At
reno DropTai - o

l L1
5 10 15 20 25 30 35 40 45

|
12 13 14 15 16

9 10 M

Mean FCT (ms)

(a) Average FCT for ants

T T T T

0.8 |-

0.6 |-

reno-IQM

reno-DropTail
| | 1

cubic-laM —

cubic-DropTail - --

Goodput (Mb/s)

14 15 16 17 18 19

CDF

FCT Standard Deviation (ms)

(b) SD of FCT for ants

1

0.8

0.6

0.4

0.2

0

cubiclaM — |
reno-1QM

cubic-DropTail ===

:eﬂD'Dro?Ta\I ----- i

1 2 3 4 5 6
Drops (pkts x 103)

(d) Total link packet drops

Figure 6: Ants FCT for IOM vs. DropTail: 50 elephants competing

CDF

CDF

(¢c) Average elephant throughput

with 30 ants

0.8 |- f

0.6 [~ f

ot/
¥

0 |

cubic-lQM —

reno-IQM
cubic-DropTail - - -
reno DiopTal -

12 14 16 18 20
Mean FCT (ms)

(a) Average ant FCT

22

0.8 |-

0.6 [~

0.4 |

0.2
reno-IQM

reno-DropTail
o Lz 1 ! 1

cubic-IoM —

cubic-DropTail - -

4.5 5 55 6 6.5
Goodput (Mb/s)

7

CDF

CDF

0.8

0.6

0.4

0.2

cubicloM —
reno-1QM
cubic-DropTail ==+
reno-DropTail

T R T

10 20 30 40 50 60 70 80 90
FCT Standard Deviation (ms)

(b) SD of ant FCT

T T T T T T T:
cubic-IQM — H
reno-IQM

cubic-DropTail ===

reno-DropTail v

2 4 6 8 10 12 14 16
Drops (pkts x 103)

(d) Total link packet drops

Figure 7: Ants FCT for IQM vs. DropTail: 150 elephants competing

with 30 ants

In summary the experimental results reinforce the results
obtained in the simulation. In particular, they show that:

e IQM helps in reducing ant traffic latency and maintains a
high throughput for elephants.

e IQM gracefully handles incast events, in low and high
load scenarios, while nearly saturating the link.

e IQM achieved all this without any modification to the

TCP algorithms at the source nor the receiver and seems
to scale well in our testbed.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a switch-assisted congestion

control mechanism to support the short-lived incast flows,
that are known to constitute the majority of flows in data
centers. Our mechanism was shown via simulation and testbed
experiments to achieve small flow completion times for incast
traffic without impairing the throughput of elephant flows. Our
IQM mechanism is also shown to be simple, practical and
also it meets all its design requirements. A number of detailed
simulations showed that IQM can achieve its goals efficiently
while outperforming the most prominent alternative approach.
Last but not least, knowing that in most public data centers the
TCP sender and/or receiver are outside the DC network, IQM
makes a point of principle to not modify the TCP algorithms
to enable true deployment potential in real networks.

(1]

(2]

[3

—

(4]

[5

—

(6]

(7]

[8

—

(9]
[10]
(1]
[12]

[13]

REFERENCES

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic,” in Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference -
IMC ’09. New York, New York, USA: ACM Press, Nov. 2009,
p. 202.

H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast
congestion control for TCP in data-center networks,” IEEE/ACM
Transactions on Networking, vol. 21, pp. 345-358, 2013.

J. Dean and S. Ghemawat, “MapReduce : Simplified Data
Processing on Large Clusters,” Communications of the ACM,
vol. 51, pp. 1-13, 2008.

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP
(DCTCP),” ACM SIGCOMM Computer Communication Review,
vol. 40, p. 63, 2010.

V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe
and effective fine-grained TCP retransmissions for datacenter
communication,” ACM SIGCOMM Computer Communication
Review, vol. 39, p. 303, 2009.

M. Handley, J. Padhye, and S.
RFC 2861 - TCP Congestion
Https://tools.ietf.org/html/rfc2861.
A. Rijsinghani. (1994) RFC
of the Internet Checksum
Https://tools.ietf.org/html/rfc1624.
W. Eddy. (2007) RFC 4987 - TCP SYN Flooding Attacks and
Common Mitigations. Https://tools.ietf.org/html/rfc4987.

Floyd. (2000)
Window Validation.

1624 -
Incremental

Computation

via Update.

NS2. The network simulator ns-2 project.
Http://www.isi.edu/nsnam/ns.

M. Alizadeh. Data Center TCP (DCTCP).
http://simula.stanford.edu/ alizade/Site/DCTCP.html.
OpenvSwitch.org. Open Virtual Switch project.

Http://openvswitch.org/.

iperf. The TCP/UDP Bandwidth Measurement Tool.
Https://iperf.fr/.
Apache.org. Apache HTTP server benchmarking tool.

Http://httpd.apache.org/docs/2.2/programs/ab.html.

