SICC: SDN-based Incast Congestion Control for
Data Centers

Ahmed M. Abdelmoniem, Brahim Bensaou, Amuda James Abu
Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
{amas, brahim, ajabu}@cse.ust.hk

Abstract—Due to the partition/aggregate nature of many
distributed cloud-based applications, incast traffic carried by
TCP abounds in data center networks. TCP, being agnostic
to such applications’ traffic patterns and their delay-sensitivity,
cannot cope with the resulting congestion events, leading to
severe performance degradation. The co-existence of such incast
traffic with other throughput-demanding elastic traffic flows in
the network worsens the performance degradation further. In
this paper, relying on the programmability of Software Defined
Networks (SDN), we address this problem in an efficient and
easily deployable manner. The proposed SDN-based incast con-
gestion control framework relies on the SDN controller and the
hypervisor programmability to solve such congestion problems
without altering the guest virtual machines nor the network
switches. We assess the performance of the proposed scheme via
real deployment in a small-scale testbed and ns2 simulation in
larger environments.

Keywords—Congestion Control, Data Center Networks, Incast,
Software Defined Networking, TCP.

I. INTRODUCTION

Driven by the popularity of cloud computing, public
data center network (DCNs) abound today in applications
that generate a large number of traffic flows with varying
characteristics and requirements. These range from large groups
of barrier-synchronized, short-lived, time-sensitive flows, like
those resulting from web searches (we call these in the sequel
mice); to long-lived, time-insensitive, bandwidth-inclined flows,
such as those resulting from backups and virtual machine
migration (we refer to these as elephants). In particular, recent
studies [1, 2] have shown that while in practice DCNs are
crowded with mice, the lion’s share in terms of the volume
of traffic still goes to the elephants. Furthermore, many mice
applications typically generate incast traffic including: i) large-
scale data processing applications where every requested
service is broken into parallel tasks assigned to worker nodes
such as MapReduce and Spark. The responses from these
workers are collected by an aggregation node that finally
produces the final result; and ii) distributed file storage in
which huge amount of data are stored in a number of distributed
storage nodes, such as BigTable, HDFS and GFS. In this case,
when a client recalls data, parallel access to some of these
distributed nodes is needed.

Manuscript is accepted for publication in proceedings of ICC17 ©2017
IEEE. This work is supported in part under Grants: HKPFS PF12-16707,
RECI4EGO03 and FSGRF14EG24

DCNs are structured to provide a high bandwidth and low
latency networking environment using Ethernet switches with
small buffers for interconnecting the servers. In the presence
of such small buffers, the sudden surge of synchronized incast
traffic results in congestion events which are exacerbated by
the presence of elephant traffic. Recent works [2, 3] showed
that such complex congestion events are inadequately handled
by TCP, as it is agnostic to the latency requirements of mice
traffic flows and the composite nature of application data. Yet
most applications in DCN still rely on TCP for data transport.

Software Defined Networking (SDN) [4] was recently
adopted as an emerging network routers and switches design
approach that separates the control functions from the datapath,
relinquishing the control to a dedicated central controller(s) with
a global-view of the network. OpenFlow [5] is currently the
dominant standard interface between the control and data path.
This technique enables rich networking functions to be easily
implemented and deployed on top of the SDN controller, yet,
it has not been extensively explored as a potential framework
for addressing incast congestion in datacenters.

We believe that any solution to the incast problem should
be appealing to both the client and the cloud operator. Hence,
we argue that modifying the TCP protocol and/or the hardware
switching logic is only applicable to small scale private data
centers. As a result, the contributions of this work can be
summarized as follows: 1) We develop and build an efficient
system namely SDN-based Incast Congestion Control (SICC)
that can handle possible contention on the buffer space before
the surge of incast traffic; and 2) We demonstrate that SICC can
significantly improve the flow completion time compared with
TCP, and other alternatives with little impact on the performance
of elephant flows; and 3) We evaluate the sensitivity of SICC
in face of varying delays between the controller, the switches
and the end-hosts.

In the remainder of this paper, we will first discuss our
proposed methodology in Section III then present our SDN-
based framework and discuss it in Section IV. Then, we will
evaluate our framework via ns2 simulations in Section V to
compare it to alternative approaches!. We finally conclude the
paper in VL

'Due to space limitation, implementation details and experimental results of
the test-bed deployment can be found in the technical report at [6]. Simulation
and implementation source code are available upon request from the authors.

velleyof — qm) Q(Tiu1) < Q(T)#N*x MSS

£ (I

i Ti+1

Figure 1: Before Incast, volley of N SYNs arrive to signal incast
at time T;. It is expected at time T 11 that incast sources
increase to the buffer by N x x x MSS bytes

II. RELATED WORK

Over the past few years, research literature became rich
with many promising proposals [2, 3, 7-10] to address the
incast congestion problems in datacenter networks. In general,
these works can be categorized into:

1) Sender-based: in [9], it is observed that there is a
mismatch between TCP timeout timers in the hosts and
the actual round-trip times (RTTs) experienced in DCNss.
Modifying the sender TCP stack to use high-resolution
timers was thus proposed to enable TCP timeout detection
in the microsecond granularity. DCTCP [3] proposed
modifying TCP congestion window adjustment function
to react proportionally to the congestion level. RED-AQM
parameters are tuned to enforce a small ECN-marking
threshold to achieve a small queue length. Both approaches
can achieve small delays for mice traffic but require
modifications of TCP sender and receiver algorithms as
well as fine tuning of RED parameters at the switches for
DCTCP.

2) Receiver-based: ICTCP [2] was proposed as a modifica-
tion to TCP receiver to handle incast traffic. ICTCP adjusts
the TCP receiver window proactively, before packets are
dropped. The experiments with ICTCP in a real testbed
show that ICTCP can almost curb timeouts and achieves
a high throughput for TCP incast traffic. Unfortunately,
ICTCP does not address the impact of buffer build up issue
caused by the co-existence of elephants in the same buffer
as mice. Furthermore, it is effective only if the incast
congestion happens at the destination node and finally it
also requires changes to the TCP receiver algorithm.

3) Switch-assisted: The authors in [7, 8, 11] proposed
AQM schemes to regulate TCP sending rate with minor
modifications to DropTail AQM. RWNDQ [7] tracks the
number of established flows to calculate a fair share for
each flow. TCP receiver window is updated to explicitly
feedback the calculated share to TCP sources. IQM [11]
monitors the TCP connection setup and tear-down events at
the switch to predict possible incast congestion in the next
few RTTs. If congestion is imminent, the receiver window
of ACKs are reset to 1 MSS to slow down elephants,
making room for the forthcoming incast traffic. Both
schemes are shown to curb timeouts for incast traffic and
achieve a high throughput for elephant traffic, however,
both require switch software modification.

4) SDN-based: SDTCP [10] involves the SDN controller
to monitor in-network congestion messages triggered by
OpenFlow switches and select currently active elephant
flows. The controller sets up OpenFlow rule at the switches
to decrease the sending rate of elephants via rewriting the
TCP receive window of ACKs. The experiments conducted
in an emulation environment (Mininet) shows almost zero
loss for TCP incast while no great effect on goodput of

the elephants. However, the proposed modifications and
notification messages from switches are unrealistic unless
they are implemented by modifying the switches.

III. PROPOSED METHODOLOGY

A simple illustration of the basic idea of our proposed
SICC is given in Fig. 1. Assuming the persistent queue length
in a SDN switch buffer at time round T; to be Q(T;), if
during 75, a volley of N new TCP connections are established
(i.e., N TCP SYN packets are seen) and no connection tear-
down (i.e., no TCP FIN packets are seen), it is expected that
after 1 RTT T; 1, the queue length Q(7}41) is no more than
Q(T;) + N = x « MSS bytes, where x is the initial window
size of TCP. Should the queue length Q(7;+1) reach a pre-set
congestion threshold, knowing that incast traffic is ephemeral
and that the persistent queue is mainly due to elephants, the
ongoing and new flows are throttled to a sending rate of 1
MSS per RTT. This ultimately achieves a short term fairness
among all flows (mice and elephants) during the lifetime of
incast traffic.

SDN framework provides useful statistics on the ongoing
number of flows and the queue occupancy for each switch
port. Hence, the SDN controller upon forecasting possible
incast event, it can send a special message to the sending end-
hosts. In turn, end-hosts start rewriting the receiver window
Rwnd in the incoming ACKs to 1 MSS. As a result, since the
sending window in TCP is the smallest between the congestion
window Cwnd and Rwnd , the senders (in particular elephants)
are throttled to 1 MSS per RTT?. Throttling all flows to a
single segment per RTT will enable the congested switches to
drain the queue below the congestion threshold. Consequently,
Rwnd rewriting would stop typically after a few RTTs to allow
ongoing elephants to recover their previous sending rate (since
Cwnd and Rwnd are still the same as before). Finally, the
controller can roughly estimate N by simply counting the
number of SYNs minus the number of FINs within a tracking
interval.

Figure 2 shows the detailed protocol interactions among
the different modules residing on the controller, switches and
end-hosts as follows: 1) The controller’s monitoring module is
responsible for tracking, accounting and extracting information
(i.e., the window scaling option) from incoming SYN/FIN.
2) The controller’s warning module is responsible for predicting
incast events based on SYN/FIN arrival rates and for sending
out incast ON/OFF special messages directed to the involved
senders’ VM addresses. 3) Upon receipt of incast ON message
for a certain VM, the SICC module starts to intercept and
modify the incoming ACKs for that VM until an incast OFF
message is received later or the incast event times out. 4) SDN
switches only need to be programmed with a Copy-to-Controller
rule for SYN/FIN packets, the controller will set out a rule at
the switches to forward a copy of any SYN/FIN packet through
the OpenFlow protocol interface.

IV. SDN-BASED INCAST CONGESTION CONTROL

The main variables and parameters used in the SICC
framework are described in Table 1. Notice that 1", DM, oy
and ao are algorithm’s parameters.

2 All the rewriting happens at the hypervisor below the VMs to not interfere
with the TCP protocol inside the VMs.

Q(t) Q(t+1)

Q(t+x)

Safe_thr

~ Controller

If Q(t) <= Safe_Thrthen “Incast OFF”

Figure 2: A detailed view of SICC framework components’ interac-
tions which forms a closed-control cycle.

Table 1: Variables and Parameters used in SICC framework

Parameter name Description
T Timeout value for monitoring interval
@ Queue threshold to turn OFF Incast
[P Queue threshold to turn ON Incast
DM Average runtime (duration) for mice flows to finish
List Objects Description
SWITCH List of the controlled SDN switches
SWITCH_PORT List of the ports on the switches
PORT_DST List of destinations reachable though port
DST_SRC List of destinations and source pairs
Q Average length of the output queue g
B buffer size on the forward path
w Window scale of source-destination pair
M Maximum segment size of source-destination pair
B Coarsely estimated differential of new connections
K Boolean true if incast is ON

A. SICCQ: Incast detection via Queue-based Monitoring

The central controller sets OpenFlow rules at all OpenFlow-
based switches to forward a copy of any SYN or FIN packets
to the controller. In most cases, TCP SYN packets contains
optional TCP headers with useful information (i.e., maximum
segment size and window scaling value), which is stored in
source-destination hash tables to be used in our algorithm.
Also, the controller inquiries for the port statistics over fixed
intervals to calculate a smooth weighted moving average of the
queue occupancy. SICCQ shown in Algorithm 1 is event-driven
and implements two major event handlers: packet arrivals and
incast detection timer expiry to trigger incast on or off message
forwarding to the involved sources.

1) Upon a packet arrival to the switch port: If this is a
SYN packet for establishing a new TCP connection, then
the current value of 3 is incremented and the necessary
information of the source establishing the connection are
extracted from the TCP headers (i.e., the window scaling
and the maximum segment size). Otherwise, If this is a
FIN packet for closing an established TCP connection,
then the current value 3 is decremented.

2) Incast detection timer expiry: Q<*’ indicates the

minimal number of extra bytes that will be introduced

into the network by the S new and existing connections.

Typically each new connection starts by sending an initial

congestion window worth of bytes T7C' P_ICW N D into

the network while existing ones will maintain the same
persistent (average) queue occupancy built over the course
of their activity. If the buffer is predicted to overflow in
the next interval due to this additional traffic introduced by
the new connections, then we need to take a fast proactive

Algorithm 1: SICCQ Controller Algorithm
Function Packet_Arrival(P, src,dst)

1

2 if SY N _bit_set(P) then

3 B+ B+1;

4 M]src]|dst] <+ P.tcpoption.mss;

5 W src][dst] < P.tcpoption.wndscale;

6 if FIN_bit_set(P) then

7 LﬁeMAX(O,ﬂ—l);

8 F:mction Incast_Detection_Timeout

9 forall sw in SWITCH do

10 forall p in SWITCH_PORT do

1 Q[sw][p] Q[SZJ][Z?] + 3><Q[jw][l7];

12 v + Blsw][p] x TCP_ICWND + Q[sw][p];
13 if now — k[sw|[p] >= DM then

14 if ¢[sw][p] < (ay x B) then

15 forall dst in PORT_DST do

16 forall src in DST_SRC do
17 msg < “INCAST OFF”;
18 send msg to src;

19 ifgﬂ >0 and vy > (az x B) then

20 forall dst in PORT_DST do

21 forall src in DST_SRC do

22 msg < “INCAST ON7”;

23 msg + msg + Wlsrc]|dst];
24 msg + msg + M]lsrc][dst];
25 send msg to src;

26 B BTsw] [p] < 0;

7 | R;start Incast detection timer 17

action to make room for the forthcoming possible incast
traffic. We immediately send to the hypervisor of the
senders involved in the incast congestion a message to
raise up their incast flag (INCAST-ON). On the other hand,
if the buffer occupancy starts decreasing below the incast
safe threshold (i.e., 20% of the buffer size) or the time
since the incast ON is more than the nominal transmission
time of mice flows, then we send to the involved hypervisor
in the incast a message to lower down their incast flag
(INCAST-OFF).

B. Hypervisor Window Update Algorithm

End-host hypervisors need to be patched and modified
to track for any possible messages coming from the SICC
controllers and implement the action of resetting the receive
window field to 1 MSS on the incoming ACK messages to guest
VMs. Currently, for identifying controller messages, we use one
of the unused (experimental) Ethernet types to indicate that the
message is either incast ON or OFF messages. The hypervisor
implements the following algorithm to act upon arrival of any
messages from the controllers. Algorithm 2 handles three type
of incoming packets: incast ON, incast OFF and TCP ACK
packets as follows:

1) Incast ON: If the received packet is identified as an
“Incast ON” from the payload of the Ethernet frame. Then

Algorithm 2: SICC Hypervisor Algorithm

1 Function Packet_Arrival(P, src, dst)
2 if INCAST ON_MSG(P) then
3 k[src]ldst] = True;
4
5

Wsrc][dst] = P.awndscale;
M{src][dst] = P.mss;

6 | if INCAST_OFF_MSG(P) then

klsrc][dst] = False ;
7 if ACK_bit_set(P) then
8 WNDscaiea = Mlsrc]ldst] >> M[src][dst];
9 if k[src][dst] and Rwnd (P) > W N Dgcqicd
then
10 Rwnd (P) = WNDgscaieds
11 L Recalculate Internet Checksum for P;

the hypervisor will turn ON the incast flag for this source-
destination pair and extracts the attached information about
the destination (i.e., the window scale shift factor and the
MSS) for ACK receiver window rewriting.

2) Incast OFF: If the received packet is identified as an
“Incast OFF” message. Then the hypervisor turns OFF
the incast flag (i.e., stop ACK update) for this source-
destination pair.

3) TCP ACK: If the received packet is identified as an
incoming TCP ACK segment. The hypervisor checks if
the incast flag is turned on for that source-destination pair,
if so the hypervisor proceeds to update the receive window
field to 1 MSS shifted by the window scale factor.

Setting the receive window of the ACKSs to a conservative
value of 1 MSS, will ensure to some extent that the short query
traffic (10-100KB) flows will not experience packet drops at
the onset of the flow (when loss recovery via three duplicate
ACK is not possible) and hence will not incur the waiting time
for retransmission timeout. In addition, the incast flag is cleared
as soon as the queue length drops below the predetermined
threshold and/or the number of RTTs for mice to finish has
expired, enabling elephant flows to restart to use their existing
congestion window values (that was simply inhibited by the
receiver window rewriting) and restore their rate immediately.

C. Practical Aspects of SICC Framework

SICC is a very simple mechanism divided among the SDN
controllers and hypervisors of the end-hosts with very low
complexity and can be integrated easily in any network whose
infrastructure are based on SDN. In addition, the window
update mechanism at the hypervisor only requires O(1) per
packet, as a result the additional computational overhead is
insignificant for hypervisors running on DC-grade servers.
SICC can also cope with Internet checksum recalculation
efficiently by applying the following straightforward one’s-
complement add and subtract operations on three 16-bit words:
Checksumye,, = Checksumeoyq + Rundye, — Rwndyg
which takes O(1) per modified packet. In addition, since SICC
is designed to deal with TCP traffic only, adding two rules to
Open-Flow switches to forward a copy of SYN and FIN packets
are simple operation in an SDN/Open-Flow based setup. The
new rules will be a simple wild-card matching over all fields
except for TCP flags which do not require per-flow information

=DCTCP

—TCP
1.0 1.0 T

0.8 0.8

0.6 0.6

CDF
CDF

0.4 0.4

0.2 0.2

ogle= .t : 0.0
20 30 40 50 60 70 80 90 10
Average Goodput (Mb/s)

H :
10 10° 10° 10*

AVG Response Time (ms)

(a) Average elephant goodput (b) Average FCT for mice

1.0 - " 1.0,
Bl (o U N S
0.8 R siccQ & 0.8
o |-+ rRwNDQ ¥
N == DCTCP H
i« 0.6| : 3 . 06
i
8 ; S

0.4

'
i -
;
o
: H i '
: | : J —TCP
: £ : L siccQ
: H i .
02 : B 02p o - +RWNDQ
e i A - =DCTCP

0.0 L L
10° 100 10° 100 10° 10’ 00510 15 20 25 30
Response Time SD (ms) Total Mice Drops

(¢) AFCT SD for mice (d) Mice packet drops

Figure 3: Performance metrics of TCP, SICCQ, RWNDQ and DCTCP
in elephant-to-mice 1:3 ratio scenario.

tracking, this completely conforms with the recent OpenFlow
1.5 specification [12].

SICC framework may be susceptible to performance degra-
dation when subjected to the famous SYN flooding attacks [13].
This attack may lead the senders’ window to frequently fluctuate
between the current full rate and 1 MSS per RTT. This is a well-
known attack which can affect the operation of any TCP flavor,
DCTCP and ICTCP as well, because it is targeted towards
TCP applications in general. Many proposals have suggested
possible solutions to mitigate this attack [13]. SICC can leverage
FloodGuard [14] which implements an efficient, lightweight
and protocol-independent defense framework for SDN networks.
It was shown that it is effective in mitigating flooding attacks
while adding only small overhead to the controller.

V. SIMULATION AND PERFORMANCE ANALYSIS

In this section, we study the performance of our algorithm
via simulation in network scenarios with a low delay high
bandwidth (as is the case in data centers) to compare our
system to TCP-DropTail, RWNDQ and DCTCP. The value of
a is set to 20% as a safe level of queue occupancy which
signals the end of incast epoch and T; is set to 1ms which is
more than the average round trip time in the network. DCTCP
parameter K is set to 17% of the buffer size. We use the network
simulator ns2 version 2.35 [15], which we have extended with
SICCQ framework. In addition, we modified ns2 TCP module
to enable TCP flow control of sending receiver window in the
ACKs. We use a patch for ns2.35 available from the authors of
[16]. We use in our simulation experiments high speed links
of 1 Gb/s for sending stations, a bottleneck link of 1 Gb/s,
average RTT of 500us and the MinRTO of 200ms which is the
default in most Linux TCP implementations. The buffer size
is 83 packets (125 KB) and max packet size is 1500 bytes.

Single-rooted Topology Simulation: we use a single-
rooted topology and run the simulations for a period of 5
sec. We simulate two scenarios to cause incast and queue-
buildup situations at the same time. The number of sources is
80 FTP flows. In the first scenario, we simulate an elephant-
to-mice ratio of 1:3. We rerun the simulation but increase the

1.0, 1.0,

w—TCP 111 SICCQ =+ +RWNDQ = = DCTCP

0.8- 0.8

0.6 0.6]
w

[a}

o

w
5
0.4

0.4-

0.2+ 0.2]

oo’ o 0.0
0 10 20 30 40 50 60 10

Average Goodput (Mb/s)

s N
10" 10° 10° 10*
AVG Response Time (ms)

(b) Average FCT for mice

1.0,

0

(a) Average elephant goodput

1.0,

s [=—"TCP
0.8 Sl siccQ

: |-+ RWNDQ
0.6 :|-- bcrcp

0.8]

0.6
w

5
o

9]

0.4 “ o4

0.2

02

? 005 10 15 20 25 30

Total Mice Drops

0.0 : L
107 107 10° 100 10° 10
Response Time SD (ms)

(¢) AFCT SD for mice

Figure 4: Performance metrics of TCP, SICCQ, RWNDQ and DCTCP
in elephant-to-mice 3:1 ratio scenario.

(d) Mice packet drops

ratio to ratio to 3:1 for elephants to examine how SICCQ
would respond in situations where the network is highly loaded
with long-lived (background) traffic. All sources start at same
time at the beginning of the simulation and elephants keep
sending at full link-rate during the whole simulation period.
Mice flows who finish their flow quickly close the connection to
reopen it at the beginning of each second (5 epochs during the
whole simulation). To ensure a relatively tight synchronization
between mice flows and create random incast patterns, in each
of the five epoch of incast, the individual mice start in a random
order with very small inter-arrival time. Each mice flow sends
10KBytes of data then halts until the start of next epoch.

Fig. 3 shows the distributions of the mean and variance
of the flow completion time (FCT) for mice, average (99th-
percentile) completion time of mice and the average goodput
for elephant flows in the lightly loaded 1:3 elephants to mice
ratio scenario. Fig. 3a suggests that SICCQ has nearly no
impact on the achieved goodput of TCP which means the
elephants’ performance is not degraded due to our scheme.
Fig. 3b and 3c show that SICCQ can improve mice flow
completion time on average with lower variation in response
times, achieving a performance close to DCTCP. As expected,
RWNDAQ is better due to its agility in setting the fair-share of
the flows as it is switch-based algorithm and requires switch
modification. SICCQ can improve TCP’s performance yet
requires no modification to the communication end-points nor
the switches. Finally, Fig. 3d shows the total cumulative mice
packets drops during the 5 epochs at the bottleneck link. This
gives an insight on how SICCQ is helping mice to achieve faster
FCT by reducing packet drops thus allowing TCP to avoid the
huge penalty of waiting for timeout. In the 3:1 elephants-to-
mice ratio case, Fig. 4a suggests that SICCQ again has achieved
the same goodput of TCP. Fig. 4b and 4c show that SICCQ
can still improve the mice average FCT with low variation
close to or better than DCTCP. RWNDAQ still gives the best
performance in this highly loaded case. Finally, Fig. 4d still
shows that SICCQ is able to reduce TCP’s drop probability at
the bottleneck and hence reduces the FCT. The results suggests
that the drops are worse when a synchronized burst of packets
hit the queue, leading to a window-full of data to be lost or a

1.0,

0.8

0.6
w
a
[}

04l :

02 iy B s RWNDQ

I ey
0.Qb=
8.0 0.5 1.0 15 2.0
Average Response Time (ms)

(a) Average FCT for mice

Mice Data Drop

(b) Mice packet drop

1800, 1.0
1641 1642
o 1600
0.8
5 1400 1283
g 1200 0.6
w
§1000 924 5
& 800 0.4 — Tcp
Seot M W OB B | 7| siccq
S 400 0.2 - RWNDQ
N S0 -~ DCTCP
& 200 0.0 SN
0 0 50 100 150 200 250 300 350 400

TCP SICCQ RWNDQ DCTCP

(¢) Average 99th % FCT

Figure 5: Performance metrics of TCP, SICCQ, RWNDQ and DCTCP
in small fat-tree topology of 144 servers.

Thoughput (Mb/s)

(d) Average elephant goodput

case where fast (i.e., 3 dup-ACK) recovery is not possible.

Fat-tree Datacenter Topology Simulation: we have cre-
ated a fat-tree like topology with 1 core, 2 aggregation, and
3 ToR switches with 48 servers/rack to study topologies used
in real data center environment. We connected an aggregation
server at the last rack which receives the query result from
all 144 server in the network. Links from core to aggregation
switches have a bandwidth of 10Gb/s, and Links between ToR
and aggregation switches have 5Gb/s and finally Server to
ToR links have 1Gb/s. This results in a over-subscription ratio
of 1:24 at the ToR level. We use propagation delays of 25us
per link and a MinRTO of 200ms. In this scenario, elephants
communicate as follows: Rackl—Rack3, Rack2— Rack3 and
Rack3—Rackl. Mice communication defines Racks 1, 2 and
3 to be the workers who send results back to the aggregation
server in 5 epochs during the simulation. Fig. 5 shows the
results for this scenario. SICCQ is able to improve incast flows
FCT compared to TCP and achieves comparable performance
as DCTCP with nearly no impact on elephants throughput.

We rerun the simulation but this time in a larger data center
setup with 3 aggregation and 6 ToR switches (i.e., 6 Racks)
leading to a network of (6 x 28) 288 servers. Elephant flows are
defined as Rack(1,2)—Rack(3,4), Rack(3,4)—Rack(5,6) and
Rack(5,6)—Rack(1,2). Fig. 6 shows the results. SICCQ and
RWNDQ can improve TCP’s performance and both achieve
better performance than DCTCP in a larger but more relaxed
over-subscribed data center. The improvement can be mainly
attributed to the reduced mice packet average drop rate and
hence the average number of failed flows for SICCQ is reduced
as shown in Fig 6a’s legend.

Sensitivity of SICCQ to the monitoring interval: we
repeat the single-rooted experiment with 1:3 elephant-to-mice
ratio for SICCQ while varying the monitoring interval 1" defined
above in the algorithm. We ran the simulation for values of
T; as described in SICCQ Algorithm 1 normalized to the RTT
value (i.e., 100 us) to cover a wide range of values: 1, 2, 10,
20, 25, 30, 50, 100 RTTs. Fig. 7 shows the distributions of the
mean and variance of FCT for mice, average (99th-percentile)
FCT of mice and the average goodput for elephants. Fig. 7a

1.0,

— TCP-FAIL=208

0.8 SICCQ-FAIL=182
* RWNDQ-FAIL=159]

- = DCTCP-FAIL=21

0.8

0.6H 0.6
w

o

[}

- 0.4

w
a
[}

0.4r TP

‘‘‘‘‘ SICCR
* RWNDQ|
== DCTCP

0.2+ 0.2]

0 i 0.0l
'8.0 0.5 1.0 15 2.0 0 2 4 6 8 10 12 14 16 18
AVG Response Time (ms) Mice Data Drop

(a) Average FCT for mice (b) AVG mice data drop

Figure 6: Performance metrics of TCP, SICCQ, RWNDQ and DCTCP
in larger fat-tree topology of 288 servers.

implies that SICCQ’s monitoring interval does not affect the
achieved goodput of TCP but it would affect the efficiency
of SICCQ’s incast detection ability. Fig. 7b, 7c and 7d show
that SICCQ can still achieve a good performance, even with a
monitoring interval 25 times wider than the RTT in the network.
This analysis suggests that a value ~ 1-25 RTT in the network
would be sufficient. In typical datacenters, with a minimum RTT
of 200-250us, this translates to reading the queue occupancy
once every 4-6.5ms which seems an acceptable probe interval
for SDN controllers. This justifies the choice of a monitoring
interval of 10 times the RTT in the previous simulations.

In terms of bandwidth overhead, we can quantify the amount
of bytes for communicating the queue size information from
the SDN switches to the controller(s). Assume we have a
network consisting of 1000 switches (48 ports per switch)
and 1 controller and assuming a probing interval of 5 ms
then a TCP message of size 48-port*2-queuesize(payload) +
20(TCP)+ 20(IP) + 14(ETH) = 150 bytes message per switch.
In total, 1000*150 = 150Kbytes of data would be received
by the controller every Sms, this translates to a bandwidth
of 150Kbytes * 8 / Sms = 240 Mbit/s (i.e., 0.24 Gbit/s). We
believe this as a reasonable bandwidth usage for communication
overhead between the switches and the controller with respect
to the performance gain for the majority of incast flows in
datacenters. In addition, in most current SDN setups, control
path is out-of-band which helps avoid any added overhead to
the datapath used by the servers in the network [17].

1.0, 1.0,

0.8
L06Hf .-
5 '
o

0.4t § -

0.2} "

0 20 40 60 80 100 120 140 0'8.07 0.2 0.4 06 0.8 1.0 1.2 1.4 16
Average Goodput (Mb/s) AVG Response Time (ms)

(b) Average FCT for mice

99th % of AVG Response Time

(a) Average elephant goodput

1.0,

S|
i
o
o
b=

0.8

0.6f "'"

w
=)
o

0.41

AVG 99th % Response Time (ms)
o
(=3
o

0.0kt £
8.0 0.2 0.4 0.6 0.8 1.0
Response Time SD (ms)

(¢) AFCT SD for mice

TCP 1 5 10 20 25 50 100

(d) Average 99th % FCT

Figure 7: SICCQ with variable queue monitoring interval.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a SDN-based congestion control
framework to help reduce the completion time of short-lived
incast flows, that are known to constitute the majority of flows
in data centers. Our framework SICC mainly relies on the
SDN controller to monitor the SYN/FIN packets arrivals and
regularly read the OpenFlow switch queues occupancy to infer
the start of incast epochs before flows start sending data into
the network. SICC was shown via simulations and testbed
experiments to improve the flow completion times for incast
traffic without impairing the throughput of elephant flows. A
number of detailed simulations showed that SICC can achieve
its goals efficiently while outperforming the most prominent
alternative approaches. SICC’s main contribution is its ability
to achieve these improvements without modifying the TCP
algorithms nor the networking hardware to enable quick and
true deployment potential in real operation-critical data center
networks. However, further testing of SICC in an operational
environment with realistic workloads and scale is necessary.

REFERENCES

[1] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic,” in Proceedings of IMC, 2009.

[2] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast
congestion control for TCP in data-center networks,” IEEE/ACM
Transactions on Networking, vol. 21, pp. 345-358, 2013.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP
(DCTCP),” ACM SIGCOMM CCR, vol. 40, pp. 63-74, 2010.

[4] Open Networking Foundation, “SDN Architecture Overview,’
Open Networking Foundation, Tech. Rep., Dec 2013.

[5] N. Mckeown, T. Anderson, L. Peterson, J. Rexford, S. Shenker,
and S. Louis, “OpenFlow : Enabling Innovation in Campus
Networks,” ACM SIGCOMM CCR, vol. 38, pp. 69-74, 2008.

[6] A. M. Abdelmoniem and B. Bensaou, “SDN-based incast
congestion control framework for data centers: Implementation
and evaluation,” CSE Dept, HKUST, Tech. Rep. HKUST-CS16-
01, 2016.

, “Reconciling mice and elephants in data center networks,”

in IEEE Conference on Cloud Networking (CloudNet), 2015.

, “Efficient switch-assisted congestion control for data

centers: an implementation and evaluation,” in /IEEE Performance

Computing and Communications Conference (IPCCC), 2015.

V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.

Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe

and effective fine-grained TCP retransmissions for datacenter

communication,” ACM SIGCOMM CCR, vol. 39, 2009.

[10] Y. Lu and S. Zhu, “SDN-based TCP Congestion Control in Data
Center Networks,” in Proceedings of IEEE IPCCC, 2015.

[11] A. M. Abdelmoniem and B. Bensaou, “Incast-Aware Switch-
Assisted TCP congestion control for data centers,” in /IEEE
Global Communications Conference (GlobeCom), 2015.

[12] opennetworking.org. OpenFlow vl.5 Specification.
Https://www.opennetworking.org/sdn-resources/openflow.

[13] W. Eddy. (2007) RFC 4987 - TCP SYN Flooding Attacks and
Common Mitigations. Https://tools.ietf.org/html/rfc4987.

[14] H. Wang, L. Xu, , and G. Gu, “Floodguard: A dos attack
prevention extension in software-defined networks,” in IEEE/IFIP
Conference on Dependable Systems and Networks, 2015.

(7]
(8]

[9

—

[15] NS2. The network simulator ns-2 project.
Http://www.isi.edu/nsnam/ns.
[16] M. Alizadeh. Data Center TCP (DCTCP).

http://simula.stanford.edu/ alizade/Site/DCTCP.html.
[17] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker,
“CAP for networks,” in Proceedings of HotSDN workshop, 2013.

