
SDN-based Incast Congestion Control Framework for Data Centers:
Implementation and Evaluation

Ahmed M. Abdelmoniem and Brahim Bensaou
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
{amas, brahim}@cse.ust.hk

Abstract

Due to the partition/aggregate nature of many distributed cloud-based applications, incast traffic carried by TCP abounds
in data center networks (DCNs). TCP, being agnostic to such applications’ traffic patterns and their delay-sensitivity, cannot
cope with the resulting congestion events, leading to severe performance degradation. The co-existence of such incast traffic
with other throughput-hogging elastic traffic flows in the network worsens the performance further. In this paper, relying on the
programmability of Software Defined Networks (SDN), we address this problem in an efficient and easily deployable manner to
make it appealing to DCN operators and clients alike. We propose a SDN-based incast congestion control framework based on
SDN controller and the hypervisor/vswitch programmability without modifying the guest VM nor the SDN-capable switches.
We assess the performance of the proposed scheme via real deployment in a small-scale testbed and ns2 simulation in larger
environments. The results demonstrate that the proposed framework can help incast traffic achieve faster completion time
without affecting long-lived flows performance.

1 Introduction
Driven by the popularity of cloud computing, public data center network (DCNs) abound today in applications that gener-
ate a large number of traffic flows with varying characteristics and requirements. These range from large groups of barrier-
synchronized, short-lived, time-sensitive flows, like those resulting from web searches (we call these in the sequel mice); to
long-lived, time-insensitive, bandwidth-inclined flows, such as those resulting from backups and virtual machine migration (we
refer to these in the sequel as elephants). In particular, recent studies [12, 33, 19, 15, 3] have shown that while in practice
DCNs are crowded with mice, the lion’s share in volume of traffic still goes to the elephants. Furthermore, many mice appli-
cations typically generate incast traffic. Typical applications that fall in this category include: i) large-scale web applications
where every requested service is broken into parallel tasks assigned to worker nodes. The responses from these workers are
collected by an aggregation node that finally produces the final result; ii) distributed file storage in which huge amount of
data are stored in a number of distributed storage nodes, such as BigTable, HDFS and GFS. In this case, when a client recalls
data, parallel access to some of these distributed nodes is needed; and, iii) data processing applications used mainly by
many web-search, e-commerce, and social networks applications. Such systems, as an example MapReduce [9], can process
huge amounts of data by partitioning and processing them in parallel across many servers. Hence, at the end of processing,
synchronized many-to-many or many-to-one data transfers take place between the involved nodes.

DCNs are structured to provide a high bandwidth and low latency networking environment. To this end, and for cost
considerations, Ethernet switches with small buffers (instead of routers with large buffers) are used for interconnecting the

1

servers. In the presence of such small buffers, the sudden surge of synchronized incast traffic results in congestion events which
are exacerbated by the presence of elephant traffic in the same buffer. Such complex congestion events are shown in recent
works [6, 33] to be inadequately handled by TCP, as it is agnostic to the latency requirements of mice traffic flows as well as to
the composite nature of the application data. Yet most applications in DCN still rely on TCP for data transport.

Recent works [3, 31, 1, 6, 33, 13, 2] tried to address this issue through different approaches. [6] proposed the well-known
DCTCP which adopts TCP-AQM as a means to controlling congestion problems in DCNs. DCTCP modifies TCP congestion
window adjustment function to maintain a high bandwidth utilization and sets RED’s parameters to a small threshold to achieve
a small queue length (and thus a short queuing delay). It is shown in [6] that DCTCP can achieve small delays for mice traffic
without degrading the link utilization. Nevertheless, DCTCP requires the modification of TCP sender and receiver algorithms
as well as fine tuning of RED parameters at the switches.

RWNDQ [3, 1] was proposed as an efficient TCP switch-assisted queue management mechanism in which the switch/router
tracks the number of established flows across each individual queue, calculate a fair share for each flow that traverses it, and
modifies the advertised receiver window to feedback this fair share to the sources. By leveraging the flow control apparatus
which is an essential part of all TCP flavours in all operating systems (i.e., all VMs), RWNDQ manages to achieve better
performance that the alternative approaches without modifying the TCP protocol code (which may not be possible in public
data centers). Nevertheless RWNDQ requires the modification of the switch software making it hardly appealing for immediate
deployment in large DC networks.

Software Defined Networking (SDN) [24] was recently adopted as an emerging network routers and switches design ap-
proach that separates the control functions from the datapath relinquishing the control to a dedicated central controller(s) with
a global-view of the network. OpenFlow [22] is currently the dominant standard interface between the control and data path.
This technique enables rich networking functions to be easily implemented and deployed on top of the SDN controller, yet, it
has not been extensively explored as a potential framework for addressing incast congestion in datacenters [18, 16, 4].

1.1 Motivation and Objectives
We believe that any solution to the incast problem should be appealing to both the client and the cloud operator. Hence, we
argue that modifying the TCP protocol and/or the hardware switching logic is only applicable to small scale private data centers.
In particular, in most public cloud services, tenants can upload their own operating system images to their virtual machines and
modify/fine tune their protocol stack as needed. As a result, our target in this paper is to craft a solution to the incast problem
that has the following requirements: (R1) it should handle effectively the problem of incast traffic congestion by improving
the incast flow completion time; (R2) it should not degrade the throughput of elephant flows to achieve this; (R3) it should not
modify the TCP sender nor receiver, and should not alter the hardware switches. If any modification is needed, it must be in
the software of the programmable devices (i.e switch controllers and/or hypervisors/vswitches) that are fully under the control
of the DCN operator; (R4) and last but not least it must be simple enough to be prone to deployment in a real system.

To this end, we adopt a SDN-based approach to congestion avoidance, where the data center controllers actively monitor
the occurrence of incast traffic and proactively entice the sender’s hypervisors to inhibit the TCP senders, whenever congestion
events are foreseen to be imminent, to make room for mice traffic allowing them to pass with minimal congestion. When
congestion recedes, the hypervisors entice the TCP senders to recovering their prior sending window immediately to sustain a
high throughput. This is all done without modifying TCP [15, 17, 21, 30].

In the remainder of this paper, we will first discuss our proposed methodology in Section 2 then present our SDN-based
framework and discuss it in Section 3. We will first evaluate our framework via ns2 simulations in Section 4 to compare it to
alternative approaches, then in Section 5 we discuss our implementation and evaluation in a small-scale testbed. We finally
conclude the paper in 7.

2

Volley of
N SYN Q(Ti) Q(Ti+1) < Q(Ti)+N*x MSS

Ti Ti+1
Figure 1: SICC Idea Rationale

2 Proposed Methodology
A simple illustration of the basic idea of our proposed SDN-based Incast Congestion Control (SICC) is given in Fig. 1.
Assuming the persistent queue length in a SDN switch buffer at time round Ti to be Q(Ti), if during Ti, a volley of N new
TCP connections are established (i.e., N TCP SYN packets are seen) and no connection tear-down (i.e., no TCP FIN packets
are seen), it is expected that after 1 RTT Ti+1, the queue length Q(Ti+1) is no more than Q(Ti) +N ∗ x ∗MSS bytes, where
x is the initial window size of TCP. Should the queue length Q(Ti+1) reach a pre-set congestion threshold, knowing that incast
traffic is ephemeral and that the persistent queue is mainly due to elephants, the ongoing and new flows are throttled to a sending
rate of 1 MSS per RTT. This ultimately achieves a short term fairness among all flows (mice and elephants) during the lifetime
of incast traffic, hence meeting requirement (R1).

In principle, since the TCP source rate is determined by the sending window Swnd which is the minimum of receiver
window Rwnd , and the congestion Cwnd , and since Cwnd is normally at least equal to 1 MSS, to meet requirement (R3),
the SDN controller, being aware of the possible incast event, can send a warning message to the sending end-hosts to start
rewriting the receiver window field in the TCP ACK headers as a means to throttling the sender rate to 1 MSS per RTT. SDN
also provides much useful statistics on the ongoing number of flows and the queue occupancy for each switch port. Notice that
all the rewriting happens in the hypervisor below the virtual machines and does not interfere with the TCP protocol inside the
VM.

Throttling all flows sending rates to a single segment per RTT will have the immediate effect of dropping the queue length
dramatically below the congestion threshold, as a result, since incast traffic is ephemeral, to meet requirement (R2), Rwnd
rewriting would stop typically after a few time intervals, which enables ongoing elephants to recover their previous sending
rate (since Cwnd and Rwnd are still the same). To meet requirement (R4), instead of tracking individual flow states to estimate
accurately the queue length in the next interval, the controller can use rough estimates by simply tracking and counting the
number N of segments with a SYN bit set less the number of segments with the FIN bit set; this in the worst case results in
a conservative estimate of the expected queue length. Without loss of generality, in the sequel we will consider the value of
initial TCP congestion window (x) to be 1 MSS.

Figure 2 shows the detailed protocol interactions among the different modules residing on the controller, switches and end-

3

...

Elephant

Mice

Controller

OF STAT REQ

OF STAT RES

Q(t)

If Q(t) + N*Init_CWND > B then Incast ON

Q(t+1)

If Q(t) <= Safe_Thr then Incast OFF

ON

Q(t+x)

OFF

Safe_thr

N

Figure 2: A detailed view of SICC framework components’ interactions which forms a closed-control cycle.

hosts as follows: 1. The controller’s monitoring module is responsible for tracking, accounting and extracting information (i.e.,
the window scaling option) from incoming SYN/FIN. 2. The controller’s warning module is responsible for predicting incast
events based on SYN/FIN arrival rates and for sending out incast ON/OFF special messages directed to the involved senders’
VM addresses. 3. Upon receipt of incast ON message for a certain VM, the SICC hypervisor/vswitch module will start to
intercept and modify the incoming ACKs for that VM until an incast OFF message is received later or the incast event timesout.
4. SDN switches only need to be programmed with a Copy-to-Controller rule for SYN/FIN packets, the controller will set out
a rule at the DC switches to forward a copy of any SYN/FIN packet through the OpenFlow protocol interface.

Figure 3 illustrates a possible deployment scenario of our proposed SICC framework in SDN based data centers. All
switches in the DC are SDN-enabled, the controller controls all the switches in the DC and sets rules in the ingress/egress
router as well as all Top of Rack (ToR) switches to intercept any TCP SYN. As a result, the controller is able to track TCP
connections and to pin-down forward and reverse paths by setting new forwarding rules (or merging them in existing aggregates)
in the DCN switches. By also intercepting the FIN segments in the ingress/egress router and ToR switches, the controller is also
able to withdraw routing rules from the switches as necessary. Each of the end-host’s hypervisor/vswitch is patched to receive
and process the incast warning originating from the central controller to update the receiver window field in the ACK headers
as they arrive into the sending end-host or guest VM.

4

SDN
Controller

Copy
SYN/FIN
to
contro ller
Rule

ToR
switches

Set
Forward ing

rules

Data Center

Ingress/Egress
Router

Incast
ON/OFF
Warning

Figure 3: A full SICC-based data center deployment with relations among end-hosts, switches and the controller.

3 SDN-based Incast Congestion Control
The main variables and parameters used in the SICC framework are described in Table 1. Notice that Ti, TMice and α are
parameters of the algorithm that can be chosen by the DC administrator. As a rule of thumb, Ti should be larger than 1 RTT.

3.1 SICCQ: Incast detection via Queue-based Monitoring
The central controller sets OpenFlow rule at all datacenter OpenFlow-based switches to forward a copy of any SYN or FIN
packets to the controller. In most cases, TCP SYN packets contains optional TCP headers with useful information (i.e., max-
imum segment size and window scaling value), which is stored in source-destination hash tables to be used in our algorithm.
Also, the controller inquiries for the port statistics over a fixed intervals to calculate a smooth weighted moving average of the
queue occupancy. By doing so, the controller is able to detect possible congestion events using the following algorithm:

SICCQ shown in Algorithm 1 is an event-driven mechanism which implements two major event handling: packet arrivals
and incast detection timer expiry to trigger incast on or off messages to the involved sources.

1. Upon a packet arrival: If this is a SYN packet for establishing a new TCP connection, then the current value of switch
port’s β is incremented and the necessary information of the source establishing the connection are extracted from the

5

Algorithm 1 SICCQ Controller Algorithm
1: procedure Packet Arrival(P, src, dst)
2: if SY N bit set(P) then
3: β ← β + 1
4: M [src][dst] ← P.tcpoption.mss
5: W [src][dst] ← P.tcpoption.wndscale

6: if FIN bit set(P) then
7: β ←MAX(0, β − 1)

8: procedure Incast Detection T imeout
9: for each sw in SWITCH do

10: for each p in SWITCH PORT do
11: Q[sw][p] ← Q[sw][p]

4 + 3×q[sw][p]
4

12: if now − IncastON [sw][p] >= TMice then
13: if q[sw][p] < α×B then
14: for each dst in PORT DST do
15: for each src in DST SRC do
16: msg ← “INCAST OFF to dst”
17: send msg to src

18: Q next ← β × Initial CWND + Q[sw][p]
19: if β > 0 and Q next ≥ B then
20: IncastON [sw][p] ← now
21: for each dst in PORT DST do
22: for each src in DST SRC do
23: msg ← “INCAST ON to dst”
24: msg ← msg + W [src][dst]
25: msg ← msg + M [src][dst]
26: send msg to src

27: β ← 0; Restart Incast detection timer Ti

6

Table 1: Variables and Parameters used in SICC framework

Parameter name Description
Ti Timeout value for monitoring interval
α Queue threshold to turn off Incast

TMice Average time for mice to finish
Variable name Description

β Coarsely estimated differential of new connections
Q Average length of the output queue q
B buffer size on the forward path
W Window scale of source-destination pair
M Maximum segment size of source-destination pair
P a packet

Rwnd(P) Receiver window field in packet P
Incast Boolean true if incast is ON

IncastON Time at which incast set to ON
SWITCH List of the controlled SDN switches

SWITCH PORT List of the ports on the switches
PORT DST List of destinations reachable though port
DST SRC List of destinations and source pairs

TCP headers (i.e., the window scaling and the maximum segment size). Otherwise, If this is a FIN packet for closing an
established TCP connection, then the current value of switch port’s β is decremented.

2. Incast detection timer expiry: Qnext
len indicates the minimal number of extra bytes that will be introduced into the

network by the β new and existing connections. Typically each new connection starts by sending an initial congestion
window Init Cwnd into the network while existing ones will maintain the same persistent (average) queue occupancy
built over the course of their activity. If the buffer is expected to overflow in the next interval due to the additional
traffic introduced by the new connections, then we need to take a fast proactive action to make room for the forthcoming
possible incast traffic. We immediately send to the hypervisor of senders involved in the incast situation a message to
raise up their incast flag (INCAST-ON). On the other hand, if the buffer occupancy starts decreasing below the incast
safe threshold (i.e., 20% of the buffer size) or the time since the incast ON is more than the transmission time of mice
flows, then we send to the involved hypervisor in the incast a message to lower down their incast flag (INCAST-OFF).

3.2 Hypervisor Window Update Algorithm
The end-host’s hypervisor or vswitch are to be patched and modified to track for any possible messages coming from the DC
controllers and implement the action of resetting the receive window field to 1 MSS on the incoming ACK messages to guest
VMs. Currently, for identifying controller messages, we use one of the unused (experimental) Ethernet types to indicate that
the message is either incast ON or OFF messages. The hypervisor implements the following algorithm to act upon arrival of
any messages from the controllers:

Algorithm 2 handles three type of incoming packets: incast ON, incast OFF and TCP ACK packets as follows:

1. Incast ON: If the received packet is identified as an “Incast ON” from the payload of the Ethernet frame. Then the
hypervisor will turn ON the incast flag for this source-destination pair and extracts the attached information about the
destination (i.e., the window scale shift factor and the maximum segment size) for ACK receiver window rewriting.

7

Algorithm 2 SICC Hypervisor Algorithm
1: procedure Packet Arrival(P, src, dst)
2: if INCAST ON set(P) then
3: INCAST [src][dst] = true
4: W [src][dst] = P.wndscale
5: M [src][dst] = P.mss

6: if INCAST OFF set(P) then
7: INCAST [src][dst] = false

8: if ACK bit set(P) then
9: val = M [src][dst] >> M [src][dst]

10: if INCAST [src][dst] and Rwnd(P) > val then
11: Rwnd(P) = newwnd
12: Recalculate Internet Checksum for P

2. Incast OFF: If the received packet is identified as an “Incast OFF”. Then the hypervisor turns OFF the incast flag (i.e.,
stop ACK rewriting) for this source-destination pair.

3. TCP ACK: If the received packet is identified as an incoming TCP ACK segment. The hypervisor checks if the incast
flag is turned on for that source-destination pair, if so the hypervisor proceeds to update the receive window field to 1
MSS shifted by the window scale factor of this source-destination pair.

Setting the receive window of the ACKs to a conservative value of 1 MSS, will ensure to some extent that the short query
traffic (10-100KB) flows will not experience packet drops at the onset of the flow (when loss recovery via three duplicate
ACK is not possible) and hence will not incur the waiting time for retransmission timeout. In addition, The incast flag is
cleared as soon as the queue length drops below the predetermined threshold and/or the number of RTTs for mice to finish
has expired, enabling thus elephant flows to re-use their existing congestion window values (that was simply inhibited by the
receiver window rewriting) and thus restore their rate.

3.3 Practical Aspects of SICC Framework
SICC framework can maintain a very low in-network loss rate during incast events and enables the switch buffer to absorb
sudden traffic surges while maintaining a high utilization. Therefore it is appealing for handling the co-existence of mice and
elephants. SICC adopts a proactive recovery actions in face of the forecast incast information. As soon as the incoming traffic
gives indication of overflowing the buffer, the receive window is shrunk drastically to 1 MSS. Furthermore the new window is
equally applied to all ongoing flows meaning that all flows (mice or elephants) will receive an equal treatment during incast
periods. As soon as, the incast traffic, which is short-lived, finishes as is indicated by the queue occupancy dropping back to
less than the predetermined incast-safety threshold, the elephants immediately restore their previous sending rates by disabling
receive window rewriting.

Notice that SICC is a very simple mechanism divided among the DC controllers and end-hosts’ hypervisor/vswitch with
very low complexity and can be integrated easily in any network whose infrastructure are based on SDN. In addition, the window
update mechanism at the hypervisor is so simple that it only requires O(1) per packet, as a result the additional computational
overhead is insignificant for hypervisors running on DC-grade servers. SICC can also cope with Internet checksum recalculation
very easily and efficiently after header modification, by applying the following straightforward one’s-complement add and
subtract operations on three 16-bit words: Checksumnew = Checksumold + Rwndnew − Rwndold [28]. This also takes
O(1) per modified packet. In addition, since SICC is designed to deal with TCP traffic only, adding two rules to Open-Flow

8

switches to forward a copy of SYN and FIN packets are simple operation in an SDN/Open-Flow based setup. The new rules
will be a simple wild-card matching over all fields except for TCP flags which do not require per-flow information tracking,
this completely conforms with the recent OpenFlow 1.5 specification [25]. Last but not least, to avoid any potential mismatch
between predicted congestion in a switch buffer and actual congestion experienced in another switch buffer due to possible
route changes, the forward and backward routes can be pinned down easily along the same path by the SDN controller; (notice
that, unlike the wide area Internet, such route changes are very highly unlikely to happen in DCs due to path stickiness and the
reliance on switches.)

SICC framework may be susceptible to performance degradation when subjected to the famous SYN flooding attacks [10].
This attack normally exploits the flooding on one-way opened connections to exhaust server memory, however in our setup,
it would force the receive window of the legitimate sources sharing the same queue to 1 MSS whenever a flood of half-open
SYN are encountered. This attack may lead the senders’ window to frequently fluctuating between the current full rate and 1
MSS per RTT. This well-known attack can affect the operation of any TCP flavor, DCTCP and ICTCP as well, because it is
targeted towards TCP applications in general. Over the past few years, many proposals have suggested possible solutions to
mitigate this attack [10]. One recent proposal that can secure SICC framework against SYN flooding attack is FloodGuard [32].
FloodGuard implements an efficient, lightweight and protocol-independent defence framework for SDN networks. It is shown
that it is effective in mitigating flooding attacks while adding only negligible overhead into the SDN framework.

4 Simulation and Performance Analysis
In this section, we study the performance of our algorithm via simulation in network scenarios with a low delay high bandwidth
(as is the case in data centers). We compare our system to TCP-DropTail, TCP-RED, RWND and DCTCP and demonstrate
how it outperforms both TCP with Droptail or RED and achieves similar performance as DCTCP and RWNDQ yet requires
neither modification to the TCP source and receiver nor to the switches. For SICC, the values of α are chosen based only on
the level of queue occupancy that signals end of incast, Ti is set to be equal to the average round trip time in the network. In
the simulation experiments, we set α to 20% of the buffer size, Ti to 10 µs (i.e., 10 times the RTT). DCTCP parameters are set
according to the recommended settings by the authors with K (the target queue occupancy) set to 17% of the buffer size.

We use the network simulator ns2 version 2.35 [23], which we have extended with SICCQ framework. In addition, we
modified ns2 TCP module, since the receiver window interaction between TCP sender and receiver (Flow Control) in ns2 does
not follow the standard TCP flow control implementation of sending receive window values in the ACKs. We compare TCP
NewReno over Droptail, SICCQ, RWNDQ and DCTCP (which involves a modification of TCP and AQM). For DCTCP, we
use a patch for ns2.35 available from the authors [5] and for proper operation, ECN-bit capability is enabled in the switch and
TCP sender/receiver. We use in our simulation experiments high speed links of 1 Gb/s for sending stations, a bottleneck link of
1 Gb/s, average RTT of 500µs and the MinRTO of 200ms which is the default in most linux TCP implementations.

4.1 Single-rooted Topology Simulation
First, we use a single-rooted (dumbell) topology and run the experiments for a period of 5 sec. The buffer size of the bottleneck
link is set in all cases to 83 packets or 125 KBytes where the mean IP data packet size is 1500 bytes. We simulate two scenarios
to cause incast and queue-buildup situations at the same time where the number of sources are 80 FTP flows. In the first
scenario, we simulate an elephant-to-mice ratio of 1:3 which is close to the reported ratio of elephants to mice in data centers
[6, 8]. We rerun the simulation but increase the share for elephants to examine how SICCQ would respond in situations where
the network is highly loaded with long-lived (background) traffic. In this simulation, we set the ratio to 3:1. All sources start
at same time at the beginning and while elephants keep sending at full link-rate during the whole simulation period, mice who
finish their flow very quickly then close the connection reopen a new one at the beginning of each second (5 epochs during
the whole simulation). To ensure a relatively tight synchronization between mice flows, and create an incast traffic scenario,

9

in each of these 5 epochs, the individual mice start in a random order within one packet transmission time of each other. Each
mouse sends 10KBytes of data then halts until the start of next epoch.

Fig. 4 shows the distributions of the mean and variance of the flow completion time (FCT) for mice, average (99th-
percentile) completion time of mice and the average goodput for elephant flows in the lightly loaded 1:3 elephants to mice
ratio scenario. Fig. 4a suggests that SICCQ has nearly no impact on the achieved goodput of TCP which means the elephants’
performance is not degraded due to our scheme. Fig. 4b and 4c show that SICCQ can improve mice flow completion time on
average with lower variation in response times, achieving a performance close to DCTCP. However, RWNDQ improves even
further due to its agility in setting the fair-share of the flows as it is switch-based. SICCQ can improve TCP’s performance yet
requires no modification to the communication end-points nor the switches. Finally, Fig. 4d shows the total cumulative mice
packets drops during the 5 epochs at the bottleneck link. This gives an insight on how SICCQ is helping mice to achieve faster
FCT by reducing packet drops thus allowing TCP to avoid the huge penalty of waiting for timeout.

In the 3:1 elephants-to-mice ratio case, Fig. 5a suggests that SICCQ again has achieved the same goodput of TCP. Fig. 5b and 5c
show that SICCQ can still improve the mice average FCT with low variation close to or better than DCTCP. RWNDQ still gives
the best performance in this highly loaded case. Finally, Fig. 5d still shows that SICCQ is able to reduce TCP’s drop probability
at the bottleneck and hence reduces the FCT. The results suggests that the drops are worse when a synchronized burst of packets
hit the queue, leading to a window-full of data to be lost or a case where fast (i.e., 3 dup-ACK) recovery is not possible.

4.2 Fat-tree Datacenter Topology Simulation
We have created a fat-tree like topology as show in Fig. 6 with 1 core, 2 aggregation, and 3 ToR switches each connecting
48 servers to mimic the topologies used in real data center environment. We connected an aggregation server at the 3rd rack
which receives the result from all 144 server in the network. We use in our simulation experiments links of core-agg=10Gb/s,
ToR-agg=5Gb/s and Server-ToR=1Gb/s links. This setup creates an over-subscription of 1:24 at the ToR level (a moderate
value to what has been reported in today’s DCs with values up to 1:80 of over-subscription). We use propagation delays of 25µs
per link and MinRTO of 200ms. In this scenario, the elephants communicates as follows: Rack1→Rack3, Rack2→ Rack3 and
Rack3→Rack1. Mice communication defines Rack 1, 2 and 3 to be the workers who are sending results back to the aggregation
server in 5 epochs during the simulation.

Fig. 7 shows the results for this scenario. SICCQ is able to improve incast flows FCT comapred to TCP and achieves
comparable performance as DCTCP with nearly no impact on elephants throughput. As expected RWNDQ outperforms all
schemes due to its accurate estimation of the fair-share at the switch. The reduced FCT is mainly attributed to the reduced
packet drops of short-lived mice flows.

We rerun the simulation but this time in a larger data center setup with 3 aggregation and 6 ToR switches (i.e., 6 Racks)
leading to a network of (6× 28) 288 servers. Elephants flows are defined as Rack(1,2)→Rack(3,4), Rack(3,4)→Rack(5,6) and
Rack(5,6)→Rack(1,2). Fig. 8 shows the results. SICCQ and RWNDQ can improve TCP’s performance and both achieve better
performance than DCTCP in a larger but more relaxed over-subscribed data center. The improvement is mainly attributed to the
reduced mice packet average drop rate and hence average number of failed flows for SICCQ are reduced as shown in Fig 8a’s
legend.

4.3 Sensitivity of SICCQ to the monitoring interval
We repeat the single-rooted experiment with 1:3 elephant-to-mice ratio for SICCQ while varying the monitoring interval over
which we read the queue occupancy and based on which we detect incast events. In this simulation, we ran the simulation for
values of Ti as described in SICCQ Algorithm 1 normalized to the RTT value (i.e., 100 µs). To cover a wide range of values we
simulated it for (1, 2, 10, 20, 25, 30, 50, 100) worth of RTTs. Fig. 9 shows the distributions of the mean and variance of FCT
for mice, average (99th-percentile) completion time of mice and the average goodput for elephant flows. Fig. 9a implies that
SICCQ’s monitoring interval does not affect the achieved goodput of TCP but it would affect the efficiency of SICCQ’s incast

10

detection ability. Fig. 9b, 9c and 9d show that SICCQ can still achieve a good performance, even with a monitoring interval 25
times wider than the RTT in the network. This analysis suggests that a value ≈ 1-25 RTT in the network would be sufficient1.
This justifies the choice of a monitoring interval of 10 times the RTT in the previous simulations. We did a sensitivity analysis
through multiple simulations (not shown here) on the value of α and safe thr parameter, we found that SICCQ is not sensitive
to these values. In terms of bandwidth overhead, we can quantify the amount of bytes for communicating the queue size
information from the SDN switches to the controller(s). Assume we have a network consisting of 1000 switches (48 ports per
switch) and 1 controller and assuming a probing interval of 5 ms then a TCP message of size 48-port*2-queuesize(payload) +
20(TCP)+ 20(IP) + 14(ETH) = 150 bytes message per switch. In total, 1000*150 = 150Kbytes of data would be received by
the controller every 5ms, this translates to a bandwidth of 150Kbytes * 8 / 5ms = 240 Mbit/s (i.e., 0.24 Gbit/s). We believe
this as a reasonable bandwidth usage for communication overhead between the switches and the controller with respect to the
performance gain for the majority of incast flows in datacenters. In addition, in majority of current SDN setups [27], control
path is out-of-band (i.e., separate from the datapath network) which helps avoid any added overhead to the datapath used by the
servers in the network and the bandwidth is used for data forwarding purposes.

5 Testbed implementation of SICC framework
We further investigate the implementation of SICC as an application program integrated with the Ryu controller [29] for
experimentation in a real-testbed. SICCQ was implemented in python programming language as a separate applications to
run along with any python-based SDN controller. We also patched the Kernel datapath modules of Openvswitch (OvS) [26]
with the window update functions described in subsection 3.2. We added the update function in the processing pipeline of
the packets that pass through the datapath of OvS. In a virtualized environment, OvS can process the traffic for inter-VM,
Intra-Host and Inter-Host communications. This is an efficient way of deploying the window update function on the host at the
hypervisor/vswitch level by only applying a patch and recompiling the running kernel module, making it easily deployable in
today’s production DCs with minimal impact on the traffic and without any need for a complete shutdown2.

5.1 Testbed Setup
For experimenting with our SICC framework, we set up a testbed as shown in Fig. 10. All machines’ internal and the outgoing
physical ports are connected to the patched OvS on the end-host. We have 4 racks: rack 1, 2 and 3 are senders and rack 4 is
receiver. each rack has 7 servers all installed with Ubuntu Server 14.04 LTS running kernel version (3.16) and are connected
to the ToR switch through 1 Gb/s links. The core switch in the testbed are OvS switches which are able to match on the TCP
flags [25]3. Similarly, the VMs are installed with the iperf program [11] for creating elephant flows and the Apache web server
hosting a single webpage ”index.html” of size 11.5KB for creating mice flows. We setup different scenarios to reproduce
both incast and buffer-bloating situations with bottleneck link in the network as shown in Fig. 10. The senders are created by
creating multiple virtual ports on the OvS at the end-hosts and binding an iperf or an Apache client/server process to each vport
which allow us to create scenarios with large number of flows in the network. In the experiments we have set the monitoring
interval (i.e., Ti) to a conservative value of 50 ms whereas the network RTT ranges from 300µs without queuing and up to 1-2
ms with excessive queuing.

1In our testbed, with a minimum RTT of 200-250µs, this translates to reading the queue occupancy once every 4-6.5ms. We believe this is an acceptable
value for the controller to probe the switches

2Typical throughput of internal networking stack is 50-100 Gb/s, which is fast enough to handle 10’s of concurrent VMs sharing a single or few physical
links. Hence, the window update function added to the vswitch would not hog the CPU and hence the achievable throughput.

3The hardware switch running OF-DPA is not following OF1.5 specifications

11

5.2 Experimental Results
The goals of the experiments are to: i) Show that TCP can support many more connections and maintain high link utilization
with the introduction of SICC framework; ii) Verify whether SICC can help TCP overcome incast congestion situations in the
network by improving mice completion time; iii) study SICC’s impact on the achieved throughput of elephants.

We run an incast with buffer-bloating scenario in which mice traffic compete with elephant flows to see if SICC can help
mice flow’s average FCT during incast period. We first generate 7 synchronized iperf elephant connections from sender racks
continuously sending for 30 secs resulting in 21 (7 × 3 = 21) elephants at the bottleneck. We use Apache benchmark [7] to
request ”index.html” webpage from each of the 7 web servers at each of the sending racks (7× 6× 3 = 126 in total) running
on the same machines where iperf are sending. Note that, we run Apache benchmark, at the 15thsec, requesting the webpage
10 times then it reports different statistics over the 10 requests. We repeated the previous experiment but in this case using TCP
cubic as the congestion control. Fig. 11 shows that, in both cases, SICCQ achieves a good balance in meeting the conflicting
requirements of elephants and mice. Specifically, Fig. 11a shows that the long-lived elephants are not affected by SICCQ’s
interruption of their sending rate for a very short period of time after which they restore their previous rates. However, the
competing mice flows benefit under SICCQ by achieving a smaller FCT on average with a smaller standard deviation compared
to TCP as shown in Fig. 11a and 11c. In addition, as SICCQ efficiently detects the incast and proactively throttles the elephants,
it can decrease the flow completion time even on the tail (i.e., 99th percentile) as shown in Fig. 11d.

We repeated the experiment but with 2 iperf flows per sender leading to 42 elephant flows (7× 3× 2 = 42). Fig. 12 shows
that SICCQ still achieves a reasonable performance improvement for both TCP NewReno and TCP Cubic. Fig. 12a shows
that long-lived elephant flows are not affected by SICCQ. Fig. 12bshows that mice flows still benefit under SICCQ even in a
situation where buffers are pressured by the large number of elephants.

In summary the experimental results reinforce the results obtained in the simulation. In particular, they show that,

1. SICC helps in reducing mice traffic latency and maintains a high throughput for elephants.
2. SICC handles incast events in low and high load scenarios while nearly fully utilizing the communication links.
3. SICC achieves all this without the need for any TCP stack alternation and/or new switch-based mechanisms.

6 Related Work
Over the past few years, research literature became rich with many promising proposals to address the incast congestion prob-
lems in datacenter networks. They mainly have been devoted to modifying either or both sides of the TCP stack, proposing new
switch mechansim or even relying on SDN’s programmability [3, 31, 1, 6, 33, 13, 2] to overcome this critical problem which
affect the performance of many cloud applications. In general, these works can be categorized into:

1. Sender-based: [31] observed that there was a mismatch between TCP timeout timers in the hosts and the actual round-
trip times (RTTs) experienced in DCNs. Typically, when incoming data overflows the small switch buffers, TCP timeouts
that last hundreds of milliseconds occur. Due to the design of TCP timeout in most operating systems a latency-sensitive
applications that suffers a timeout would have to wait for several hundred RTTs before it can retransmit its data4. The pro-
posed solution in [31] modifies the sender TCP stack by using high-resolution timers to enable microsecond-granularity
in TCP timeouts. However, this technique was shown to effectively avoid TCP incast collapse, it may require fine tuning
of the Min-RTO based on network conditions and hence a chosen Min-RTO value may not suit all scenarios and network
sizes. It also requires the modification and rebuilding of guest VM’s TCP.

4For example the Linux implementation sets the minimum timeout to 200 millisecond whereas the RTT in a data center ranges typically from a few tens to
a few hundred microseconds

12

2. Receiver-based: ICTCP [33] was proposed as a modification to TCP receiver to handle incast traffic. ICTCP adjusts
the TCP receiver window proactively, before packets are dropped. The experiments with ICTCP in a real testbed show
that ICTCP can almost curb timeouts and achieves a high throughput for TCP incast traffic. Unfortunately, ICTCP
does not address the impact of buffer build up issue caused by the co-existence of elephants in the same buffer as the
mice. Furthermore, it is effective only if the incast congestion happens at the destination node and finally it also requires
changes to the TCP receiver algorithm.

3. Switch-assisted: IQM [2, 20, 14] proposed a small modification to the switches to predict incast events and act proac-
tively. IQM tracks the TCP connection setup and tear-down events at the switch to predict possible incast congestion
in the next few RTTs. IQM upon finding that the congestion would be severe and lead to overflow, it sets the receiver
window of ACK packets to 1 MSS to slow down the elephants. The simulation results and experiments with IQM in a
real testbed show that IQM can almost alienate possible timeouts for TCP incast traffic and achieves a high throughput for
TCP elephant traffic. Unfortunately, IQM may not see a big potential for deployment due to the required modification to
switch forwarding ASIC. Furthermore, due to IQM’s flow-unaware nature, TCP is required to operate without the use of
window scaling option. Also, in IQM, TCP flows should be routed through the same forward and backward path which
is achievable through SDN functionality.

4. SDN-based: SDTCP [13], proposes an incast congestion control mechanism that leverages SDN architecture and imple-
ments a network side congestion control. They involve the SDN controller to monitor in-network congestion messages
triggered by OpenFlow switches and select currently active elephant flows by inquiring the switches for flow-level in-
formation. Then, consequently, the controller will set up OpenFlow rule at the switches. These flow-based rules are set
to decrease the sending rate of elephants by rewriting the TCP receive window of ACK packet. The motivation was the
global perspective available for SDN controllers, where elephants can be identified and rate-limited during congestion
events. The experiments conducted in an emulation environment (Mininet) shows almost zero packet loss for TCP incast
while no great effect on goodput of the elephants. The major problem is that, the proposed modifications i.e., the receiver
window rewriting and switches sending out congestion notification messages are unrealistic unless they are implemented
and supported by the switching chip.

7 Conclusion and future work
In this paper, we proposed a SDN-based congestion control framework to support and help reduce the completion time of
short-lived incast flows, that are known to constitute the majority of flows in data centers. Our framework SICC mainly relies
on the SDN controller to monitor the SYN/FIN packets arrivals along with reading over regular intervals the OpenFlow switch
queue occupancies to infer the start of incast epochs before they start sending into the network. SICC was shown via ns2
simulations and testbed experiments to improve the flow completion times for incast traffic without impairing the throughput
of elephant flows. Our SICC framework is also shown to be simple, practical, easily deployable and also it meets all its design
requirements. A number of detailed simulations showed that SICC can achieve its goals efficiently while outperforming the
most prominent alternative approaches. Last but not least, knowing that in most public data centers, it is beneficial to both the
operator and tenants if the congestion control framework is deployable without making any changes to the TCP sender and/or
receiver nor the in-place commodity hardware switching. SICC’s main contribution is to make a point of principle to not modify
the TCP algorithms nor the networking hardware to enable quick and true deployment potential in real operation-critical data
center networks. Further testing of SICC in an operational environment with realistic workloads and scale is necessary.

13

References
[1] A. M. Abdelmoniem and B. Bensaou. Efficient Switch-Assisted Congestion Control for Data Centers: an Implementation

and Evaluation. In IEEE International Performance Computing and Communications Conference (IPCCC), Dec. 2015.

[2] A. M. Abdelmoniem and B. Bensaou. Incast-Aware Switch-Assisted TCP Congestion Control for Data Centers. In IEEE
Global Communications Conference (GlobeCom), 2015.

[3] A. M. Abdelmoniem and B. Bensaou. Reconciling Mice and Elephants in Data Center Networks. In IEEE International
Conference on Cloud Networking (CloudNet), 2015.

[4] A. J. Abu, B. Bensaou, and A. M. Abdelmoniem. Leveraging the Pending Interest Table Occupancy for Congestion
Control in CCN. In IEEE Local Computer Networks (LCN), 2016.

[5] M. Alizadeh. Data Center TCP (DCTCP). http://simula.stanford.edu/ alizade/Site/DCTCP.html.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data center
TCP (DCTCP). ACM SIGCOMM Computer Communication Review, 40:63–74, 2010.

[7] Apache.org. Apache HTTP server benchmarking tool. http://httpd.apache.org/docs/2.2/programs/ab.html.

[8] T. Benson, A. Akella, and D. a. Maltz. Network traffic characteristics of data centers in the wild. In Proceedings of the
10th ACM SIGCOMM, 2010.

[9] J. Dean and S. Ghemawat. MapReduce : Simplified Data Processing on Large Clusters. Communications of the ACM,
51:1–13, 2008.

[10] W. Eddy. RFC 4987 - TCP SYN Flooding Attacks and Common Mitigations, 2007. https://tools.ietf.org/html/rfc4987.

[11] iperf. The TCP/UDP Bandwidth Measurement Tool. https://iperf.fr/.

[12] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The nature of data center traffic. In Proceedings of the
9th conference on Internet measurement conference (IMC09), 2009.

[13] Y. Lu and S. Zhu. SDN-based TCP Congestion Control in Data Center Networks. In 43th IEEE International Performance
Computing and Communications Conference (IPCCC), 2015.

[14] A. M. Abdelmoniem, Y. M. Abdelmoniem, and B. Bensaou. On Network Systems Design: Pushing the Performance
Envelope via FPGA Prototyping. In IEEE international Conference on Recent Trends in Computer Engineering (IEEE
ITCE), 2019.

[15] A. M. Abdelmoniem and B. Bensaou. Curbing Timeouts for TCP-Incast in Data Centers via A Cross-Layer Faster
Recovery Mechanism. In IEEE International Conference on Computer Communications, 2017.

[16] A. M. Abdelmoniem and B. Bensaou. Enforcing Transport-Agnostic Congestion Control via SDN in Data Centers. In
IEEE Local Computer Networks (LCN), Singapore, October 2017.

[17] A. M. Abdelmoniem and B. Bensaou. Hysteresis-based Active Queue Management for TCP Traffic in Data Centers. In
IEEE International Conference on Computer Communications, 2019.

[18] A. M. Abdelmoniem, B. Bensaou, and A. J. Abu. HyGenICC: Hypervisor-based Generic IP Congestion Control for
Virtualized Data Centers. In Proceedings of IEEE ICC, 2016.

14

[19] A. M. Abdelmoniem, B. Bensaou, and A. J. Abu. Mitigating TCP-Incast Congestion in Data Centers with SDN. Special
issue on Cloud Communications and Networking, Annals of Telecommunications, 2017.

[20] A. M. Abdelmoniem, B. Bensaou, and V. Barsoum. IncastGuard: An Efficient TCP-Incast Congestion Effects Mitigation
Scheme for Data Center Network. In IEEE International Conference on Global Communications (IEEE GlobeCom),,
2018.

[21] A. M. Abdelmoniem, H. Susanto, and B. Bensaou. Taming Latency in Data centers via Active Congestion-Probing. In
IEEE International Conference on Distributed Computing Systems (IEEE ICDCS), 2019.

[22] N. Mckeown, T. Anderson, L. Peterson, J. Rexford, S. Shenker, and S. Louis. OpenFlow : Enabling Innovation in Campus
Networks. ACM SIGCOMM Computer Communication Review, 38:69–74, 2008.

[23] NS2. The network simulator ns-2 project. http://www.isi.edu/nsnam/ns.

[24] Open Networking Foundation. SDN Architecture Overview. Technical report, Open Networking Foundation, Dec 2013.

[25] opennetworking.org. OpenFlow v1.5 Specification. https://www.opennetworking.org/sdn-resources/openflow.

[26] OpenvSwitch.org. Open Virtual Switch project. http://openvswitch.org/.

[27] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker. CAP for networks. In Proceedings of ACM SIGCOMM
HotSDN workshop, 2013.

[28] A. Rijsinghani. RFC 1624 - Computation of the Internet Checksum via Incremental Update, 1994.
https://tools.ietf.org/html/rfc1624.

[29] Ryu Framework Community. Ryu: a component-based software defined networking controller. http://osrg.github.io/ryu/.

[30] H. Susanto, B. L. Ahmed M. Abdelmoniem, Honggang Zhang, and D. Towsley. A Near Optimal Multi-Faced Job Sched-
uler for Datacenter Workloads. In IEEE International Conference on Distributed Computing Systems (IEEE ICDCS),
2019.

[31] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller. Safe and
effective fine-grained TCP retransmissions for datacenter communication. ACM SIGCOMM Computer Communication
Review, 39:303–314, 2009.

[32] H. Wang, L. Xu, , and G. Gu. Floodguard: A dos attack prevention extension in software-defined networks. In IEEE/IFIP
Conference on Dependable Systems and Networks, 2015.

[33] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast congestion control for TCP in data-center networks. IEEE/ACM
Transactions on Networking, 21:345–358, 2013.

15

20 30 40 50 60 70 80 90
Average Goodput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP
SICCQ
RWNDQ
DCTCP

(a) Average elephant goodput

100 101 102 103 104

AVG Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP SICCQ RWNDQ DCTCP

(b) Average FCT for mice

10-2 10-1 100 101 102 103

Response Time SD (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP
SICCQ
RWNDQ
DCTCP

(c) AFCT SD for mice

0 5 10 15 20 25 30
Total Mice Drops

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP
SICCQ
RWNDQ
DCTCP

(d) Mice packet drops

Figure 4: Performance metrics of TCP, SICCQ, RWNDQ and DCTCP in elephant-to-mice 1:3 ratio scenario.

16

0 10 20 30 40 50 60
Average Goodput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP
SICCQ
RWNDQ
DCTCP

(a) Average elephant goodput

100 101 102 103 104

AVG Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP SICCQ RWNDQ DCTCP

(b) Average FCT for mice

10-2 10-1 100 101 102 103

Response Time SD (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP
SICCQ
RWNDQ
DCTCP

(c) AFCT SD for mice

0 5 10 15 20 25 30
Total Mice Drops

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP
SICCQ
RWNDQ
DCTCP

(d) Mice packet drops

Figure 5: Performance metrics of TCP, SICCQ, RWNDQ and DCTCP in elephant-to-mice 3:1 ratio scenario.

17

Rack 1 Rack 2 Rack 3

Aggregation

Core

ToR

Aggregator
Server

Figure 6: A fat tree topology connecting 145 servers.

18

0.0 0.5 1.0 1.5 2.0
Average Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP
SICCQ
RWNDQ
DCTCP

(a) Average FCT for mice

0 2 4 6 8 10 12 14
Mice Data Drop

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP
SICCQ
RWNDQ
DCTCP

(b) Mice packet drop

TCP SICCQ RWNDQ DCTCP0
200
400
600
800

1000
1200
1400
1600
1800

99
%

 A
VG

 R
es

po
ns

e
Ti

m
e

1641

1283

924

1642

(c) Average 99th % FCT

0 50 100 150 200 250 300 350 400
Thoughput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP
SICCQ
RWNDQ
DCTCP

(d) Average elephant goodput

Figure 7: Performance metrics of TCP, SICCQ, RWNDQ and DCTCP in small fat-tree topology of 144 servers.

19

0.0 0.5 1.0 1.5 2.0
AVG Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP-FAIL=208
SICCQ-FAIL=182
RWNDQ-FAIL=159
DCTCP-FAIL=212

(a) Average FCT for mice

0 2 4 6 8 10 12 14 16 18
Mice Data Drop

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

TCP
SICCR
RWNDQ
DCTCP

(b) AVG mice data drop

Figure 8: Performance metrics of TCP, SICCQ, RWNDQ and DCTCP in larger fat-tree topology of 288 servers.

20

0 20 40 60 80 100 120 140
Average Goodput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of RTT
TCP
1
5
10

20
25
50
100

(a) Average elephant goodput

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
AVG Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of RTT
TCP
1
5
10

20
25
50
100

(b) Average FCT for mice

0.0 0.2 0.4 0.6 0.8 1.0
Response Time SD (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of RTT
TCP
1
5
10

20
25
50
100

(c) AFCT SD for mice

TCP 1 5 10 20 25 50 1000
200
400
600
800

1000
1200
1400
1600

AV
G

99
th

 %
 R

es
po

ns
e

Ti
m

e
(m

s)

1303

526 461
542

982

12401225

1423

99th % of AVG Response Time

(d) Average 99th % FCT

Figure 9: SICCQ with variable queue monitoring interval.

21

Rack 1 Rack 2 Rack 3

Core

ToR

Rack 4

Controller

Bottleneck
Control

Figure 10: A real testbed for experimenting with SICC framework

22

25 30 35 40 45 50 55 60 65
Elpehant Goodput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Reno
Reno-SICCQ
Cubic
Cubic-SICCQ

(a) Average elephant throughput

0.10 0.12 0.14 0.16 0.18
Average Response Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Reno
Reno-SICCQ
Cubic
Cubic-SICCQ

(b) Average FCT for mice

0.00 0.04 0.08 0.12 0.16
Response Time variance (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Reno
Reno-SICCQ
Cubic
Cubic-SICCQ

(c) SD of FCT for mice

0.1 0.2 0.3 0.4 0.5
99th % Response Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Reno
Reno-SICCQ
Cubic
Cubic-SICCQ

(d) 99th % of FCT for mice

Figure 11: SICCQ vs. TCP: 126 mice competing with 21 elephants

23

10 15 20 25 30 35 40 45
Elpehant Goodput (Mb/s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Reno
Reno-SICCQ
Cubic
Cubic-SICCQ

(a) Average elephant throughput

0.10 0.12 0.14 0.16 0.18
Average Response Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Reno
Reno-SICCQ
Cubic
Cubic-SICCQ

(b) Average FCT for mice

Figure 12: SICCQ vs. TCP: 126 mice competing with 42 elephants

24

	Introduction
	Motivation and Objectives

	Proposed Methodology
	SDN-based Incast Congestion Control
	SICCQ: Incast detection via Queue-based Monitoring
	Hypervisor Window Update Algorithm
	Practical Aspects of SICC Framework

	Simulation and Performance Analysis
	Single-rooted Topology Simulation
	Fat-tree Datacenter Topology Simulation
	Sensitivity of SICCQ to the monitoring interval

	Testbed implementation of SICC framework
	Testbed Setup
	Experimental Results

	Related Work
	Conclusion and future work

