
Curbing Timeouts for TCP-Incast in Data Centers
via A Cross-Layer Faster Recovery Mechanism

Ahmed M. Abdelmoniem*

CSE Dept., HKUST, Hong Kong
CS Dept., FCI, Assuit University, Egypt

Future Networks Theory Lab, Huawei, HK
amas@cse.ust.hk / ahmedcs@aun.edu.eg

Brahim Bensaou
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

brahim@cse.ust.hk

Abstract—We first study, at a microscopic level, the effects of
various types of packet losses on TCP performance in a small data
center. Then based on the findings we propose a simple recovery
mechanism to combat the drawbacks of the long retransmission
timeout. We emphasize through our empirical study that packet
losses that occur at the tail of short-lived flows and/or bursty
losses that span a large fraction of the congestion window are
frequent in data center networks; and, in most cases, especially
for short-lived flows, they result in a loss recovery that incurs
waiting for a long retransmission timeout (RTO). The negative
effect of frequent RTOs on the FCT is dramatic, yet recovery
via RTO is merely a symptom of the pathological design of
TCP’s minimum RTO mechanism (set by default to the Internet
scale). We propose the so-called Timely Retransmitted ACKs (T-
RACKs), a very simple recovery mechanism for data centers,
implemented as a shim layer between the virtual machines layer
and the end-host NIC, to bridge the gap between TCP’s huge
RTO and the actual round trip times experienced in the data
center. Compared to alternative solutions such as DCTCP, our T-
RACKS has the virtue of not requiring any modification to TCP,
which makes it readily deployable in virtualized multi-tenant
public data centers. Experimental results show considerable
improvements in the FCT distribution.

Index Terms—Data Center, Cross Layer, Fast Recovery, Kernel
Module, TCP-Incast, Timeouts.

I. INTRODUCTION

The recent growth in data center deployments worldwide is
reshaping the way the Internet and its application operate. New
cloud-driven data intensive applications have emerged over the
past few years to harness the cost-effectiveness and scalability
afforded by cloud computing. Most such applications rely on
distributed programming frameworks such as Hadoop, HDFS
or Spark [1] for storage and processing of very large data sets.
In such frameworks, master nodes often require data transfers
from hundreds of worker nodes to build a complete (or partial)
result. Due to the stringent timing requirements of interactive
applications, a data transfer that misses a hard deadline,
because of excessive waiting for packet loss recovery, returns
a partial result (of lower quality). Hence, the quality of the
application results is correlated not only with the average
latency of traffic coming from a worker but also with the
latency of the tail result (e.g., the 90th percentile of the

*This is work is done while Ahmed was Ph.D. student at HKUST, HK.

flow completion times) which can be from 2 to 4 orders of
magnitude worse than the median or even the average. In
small scale private data centers, CPU resources are often the
bottleneck and solutions that rely on task admission control
and scheduling already exist (e.g., [2]). In contrast, public
data centers are usually equipped with abundant computing
resources but often adopt high over-subscription ratios in the
network, making network latency the main bottleneck [3]. This
is typical for many Internet-scale applications deployed on
public (IaaS) clouds such as Microsoft Azure or Amazon EC2.

To circumvent such problem, large corporations such as
Microsoft, Facebook and Google use dedicated well-structured
data centers to deploy their time-sensitive applications. Nev-
ertheless, in multi-tenant public data centers due to the pre-
dominance of many-to-one (or many-to-many) communication
patterns and the variety of congestion control protocols in use,
network congestion is inevitable and still results into long-tail
waiting behavior. In addition, virtualization and the frequent
context switching by the hypervisors to arbitrate resources
among competing VMs contribute greatly to the inaccurate
estimation of in-network delays by TCP in the VM, resulting
in RTT estimates being bloated from the microsecond time-
scale to the millisecond time-scale. Recent measurements [4–
7] show excessive in-network packet losses during various
congestion events.

TCP is by far the major transport protocol used by data
center applications, however its design is still Internet-centric
and is ill-suited for high-bandwidth low-latency environments
like data centers. Proposed approaches for such environ-
ments [5, 8, 9] try to achieve in-network low delay via tradi-
tional methods by achieving a low queue occupancy; however
these approaches fail to address the unfortunate cases when
packet losses lead to timeouts, for instance, due to TCP-Incast.
To understand fully the impact of timeouts, especially on short-
lived flows, we first complement past works by conducting
our own empirical study of the loss events in a small data
center. To this end, we capture and trace microscopically TCP
flows at the socket-level. Then by analyzing the collected
data we study the frequency of occurrence of the two TCP
loss recovery mechanisms (viz., RTO and 3-DUPACK) with
respect to the flows size. We show notably that RTOs are often
caused by tail-end losses or bursty losses and while they haveManuscript is accepted for publication in proceedings of INFOCOM c©2018 IEEE

negligible effects on the delay of long-lived flows, their effects
are devastating on the performance of short-lived flows. To
address this issue without modifying TCP1, we propose a very
simple mechanism to trigger a faster recovery for seemingly
lost data long before the RTO expires. The contributions we
make are three-fold:

1) We empirically study packet losses in depth as seen from
the TCP socket level. The recovery mechanisms and their
impact on the performance of TCP is highlighted.

2) We propose a light-weight cross-layer approach for a
timely loss recovery before the RTO fire, without inter-
fering with TCP in the guest VMs.

3) We evaluate the proposed scheme via large-scale ns2
simulations and a small-scale testbed implementation
and experiments, showing up to 1 order of magnitude
reduction in completion time of short-lived flows2.

In the remainder, supported by an empirical study, we show
the dramatic impact the RTO cause to the performance of time-
sensitive flows in Section II. The proposed methodology and
system design are presented in Section III. In Section IV, we
discuss the packet-level simulation results in detail. Then, in
Section V, we present the experimental results from the testbed
deployment. We discuss important related work in Section VI.
Finally, we conclude the paper in Section VII.

II. PROBLEM AND MOTIVATION

As the reader will see later, our proposed solution is simple
and effective, however, it is not simplistic, as it derives from a
deep understanding of TCP congestion and the mechanisms
devised to address it. Therefore we will first motivate the
approach and contrast it against existing alternatives before
we move on to discuss the empirical study of TCP at the
socket-level. Many schemes proposed in the literature deal
with TCP congestion in data centers in a classic Internet-
centric approach by invoking mechanism such as RED. The
short-cut taken being “long delays and losses in the network
can be curtailed by keeping the queue in the port buffer short
via a RED-like mechanism”. This short-cut unfortunately is
fallacious for two major reasons: i) Data centers use high speed
switches with small shallow buffers instead routers, therefore,
the contribution of queueing delays to the total FCT is neg-
ligible regardless of the buffer occupancy. ii) Packet losses
in TCP are not the pathology, they are merely the symptoms
of congestion. The original designers of TCP, cleverly made
packet losses an inevitable consequence of additive increase.
They are meant to trigger a reaction with a conservative
multiplicative decrease of the sending rate. For these reasons,
many popular schemes designed specifically for data centers
fail to actually address the problem of TCP incast congestion.

A number of measurement studies [4, 10, 11] have been
conducted and shown that latencies in data centers environ-

1Notice that in public data centers, under the IaaS model, the operating
system and thus the protocol stack in the VM is under the full control of the
tenant and cannot be modified by the cloud service provider.

2The implementation, simulation and experimental code and scripts are
available at http://ahmedcs.github.io/T-RACKs.

ments vary greatly. To further understand the reasons of such
issue, we here dive deep into the packet level analysis of the
flows and the TCP socket variables at a microscopic level to
understand TCP behavior and its loss recovery mechanisms.

Non traditional solutions were also proposed. An early
work [12], based on data center measurements, found that the
timeout mechanism is to blame for the long waiting times and
proposed the very simple yet effective solution of reducing the
minRTO value for TCP in data center environments, while
using high resolution timers to keep track of delays at the
microsecond-level. This approach actually solves the problem,
reduces the FCT and mitigates TCP-incast congestion effects.
However, i) it requires the modification of TCP, which makes
it less appropriate for public multi-tenant data centers; and,
ii) there is no magical minRTO value that fits all environments:
for instance a minRTO that works inside the data center (e.g.,
between a web server and the backend database server) will
definitely lead to spurious timeouts for Internet-facing con-
nections (e.g., the connection between the web administrator
workstation and the server in the data center).

A recent RFC [13] proposed the so-called tail loss probe
(TLP) mechanism, which recommends sending TCP probe
segments whenever ACKs do not arrive within a short Probe
TimeOut (PTO)3. In addition to requiring changes to TCP,
this approach suffers from two additional problems: i) probe
packets also may be lost; and, ii) probe packets may worsen
the in-network congestion, especially during TCP-incast.

A. Analyzing the Pathology and Symptoms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b

il
it

y
 D

is
tr

ib
u
ti

o
n

Loss size normalized to CWND

Samples=21835
Median=15.76
Mean=20.48
STDEV=9.09

(a) FR size rel. CWND size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b

il
it

y
 D

is
tr

ib
u
ti

o
n

Loss size normalized to CWND

Samples=7149
Median=31.56
Mean=32.25
STDEV=16.67

(b) RTO size rel. CWND size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b

il
it

y
 D

is
tr

ib
u
ti

o
n

Loss position normalized to CWND

Samples=21835
Median=73.50
Mean=19.33
STDEV=80.00

(c) FR pos rel. CWND

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b

il
it

y
 D

is
tr

ib
u
ti

o
n

Loss position normalized to CWND

Samples=7149
Median=75.99
Mean=17.92
STDEV=81.40

(d) RTO pos rel. CWND
Figure 1: (a-b) shows retransmission size while (c-d) position of the

segment relative to CWND.
To find out why packet losses do not seem to affect much

elephant flows while degrading dramatically the performance
of short-lived flows, we implemented a socket-level monitor
module to collect TCP socket information. Then, we used our
custom-built traffic generator to replicate Websearch workload
of thousands of flows. Figs. 1a and 1b show the size of each
retransmission (i.e., the seq# of the first and last segment

3PTO is set to min(2*srtt, 10ms) if inflight>1 and to 1.5*srtt + worst case
delayed ACK (i.e, 200ms) if inflight==1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

CWND size

Fast Retransmit
RTO Retransmit

(a) CDF of CWND size

 0

 20

 40

 60

 80

 100

 120

 140

 160

Web
Web-TLP

Data
Data-TLP

A
ve

ra
ge

 F
C

T
w

ith
 E

rr
or

ba
rs

 (
m

s)

Scheme

(b) FCT of small flows
Figure 2: (a) shows the CDF of CWND at the time of the trans-

mission of the lost packet. (b) TLP and NO-TLP FCT for
Websearch and Datamining workloads

in a single recovery) with respect to the congestion window
Cwnd for the fast retransmit recovery (FRR) and RTO-based
recovery, respectively. While, Figs. 1c and 1d show the index4

of the first retransmitted segment relative to Cwnd when it was
first transmitted (i.e., before loss is detected). Fig. 1b clearly
shows that even though the RTO distribution is heavily tailed
toward smaller fractions of the window, the distribution covers
the whole range of fractions of the window. As, we can see that
there are noticable RTO events covering large portions of the
window (sometimes, the whole window). Fig. 1a suggests that
FRR is also heavy tailed with much greater positive skewness
towards small fractions of the window which allows for 3-
dupACKs recovery. Fig. 1c points out that losses at the tail
of the window occur with higher frequency, however in the
case of FRR, the Cwnd is relatively large enough to allow
for FRR. Similarly, Fig. 1d clearly shows similar trends with
higher frequency at the tail, however, in this case, Cwnd is
relatively small and hence, contains less in flight packets to
allow for FRR. To put this into context, we see in Fig. 2a that
typically Cwnd for the flows with segments that experience
RTO is smaller than that of those that recover via FRR.

Finally, we also show the ineffectiveness of the TLP mech-
anism [13] in recovering tail losses. Fig. 2b, shows that the
TLP mechanism is not effective and due to its overhead it may
even increase the FCT of short flows.

In data centers the pipeline size (i.e., Bandwidth-Delay
Product) is small: typically with 100us RTT, a link of 1Gbps
(respect. 10Gbps) can accommodate 8.3 packets (respect. 83
packets). In conjunction with shallow buffered switches, the
nominal TCP fair share during TCP-incast barely exceeds one
packet per flow and hence the occurrence of RTO is highly
likely. This clearly highlights how TCP’s performance can be
degraded when operating in small windows regime in a small
buffer with high-bandwidth low-delay switching environments
like data centers. The effect on the flow completion time is
more severe for short, time-sensitive flows, that normally last
only a few RTTs, but that are compelled to wait for 2 to 4
orders of magnitude extra time due to the minRTO rule.

III. SYSTEM DESIGN

In this section, we will introduce T-RACKs whose design
is based on the following observation: packet losses are
inevitable for the proper operation of TCP, the key to reducing

4The index here points to the first retransmitted packet if a range of
consecutive packets were lost. Each figure shows the aggregate of all servers

the long latency and jitter is not to try to avoid losses but
rather try to avoid long waiting after losses occur. Its design
is subject to the following requirements: (R1) To improve the
FCT of latency-sensitive applications (mice flows). (R2) To
be friendly to throughput-sensitive long-lived (elephant) flows
(i.e., does not sensibly degrade their throughput). (R3) To be
compatible with all existing TCP flavors (i.e., modifications
must be in the hypervisors, which are fully under the control
of the DCN operator, not in TCP itself); (R4) Last but not
least, the mechanism must be simple enough to to be easily
deployable in real data centers.

In this perspective, we design T-RACKs to actively infer
packet losses by monitoring per-flow TCP ACK numbers and
to proactively trigger the FRR mechanism of TCP to take
action whenever and RTO is likely to take place. The goal
is to help certain TCP flows recover from losses instead of
waiting for TCP minRTO. The proposed intervention happens
only when the loss is almost certain, leading to a significant
improvement of recovery times, and hence the FCT of TCP.
T-RACKs design derives from the following arguments: i) all
TCP flavors adopt the FRR mechanism as a way to detect and
recover from losses without incurring the expensive timeouts.
If the one can force the mechanism into action, regardless
of the nature of the loss, the resulting system would be
transparent to the TCP protocol in the VM; ii) TCP relies
on a small number of dupACKs to activate FRR, however in
the majority of cases (especially for short-flows) there aren’t
enough packets in flight to trigger dupACKs. To achieve this,
we propose to use “spoofed” TCP ACK signaling from the
hypervisor to the VM. The hypervisor maintains a per-flow
timer β = α ∗ RTT + rand(RTT) to wait for the ACKs
before it triggers FRR with spoofed dupACKs.

Note: After designing our mechanism we found out that
our idea is reminiscent of the well known TCP SNOOP
protocol [14] which retransmit lost segments on the behalf of
the communicating end-points to filter bit-errors in low speed
wireless networks. SNOOP also can can be applied in data
centers, however, it is expensive to implement as it requires
buffering all sent segments at the lower layers (e.g., link-layer)
which requires a large buffer space in data centers.

A. T-RACKs Algorithm

T-RACKs algorithm 1 consists of three main functions:
per-flow state maintenance on arrival and on departure and
a timeout event handler. In the initialization (lines 1−6), an
in-memory flow cache pool is created to be used for new flow
arrivals. This approach speeds up flow objects creation. To
efficiently identify flow entries, a hash-based flow table is
created and manipulated via the Read-Copy-Update (RCU)
mechanism. Other parameters and variables are set in this
step as well. Before each TCP segment departure, the program
(lines 7 − 15) performs the following actions: i) in (line 8),
the packet is hashed using its 4-tuple and its corresponding
flow is identified; ii) in (lines 9−15), if a SYN arrives or the
flow entry is inactive (i.e., a new flow), the flow entry is reset
then TCP header info and options are extracted to activate a

Algorithm 1: T-RACKs Packet Processing
1 Create flow cache pool;
2 Create flow table and reset flow information;
3 Initialize and insert NetFilter hooks;

Input: α # of RTTs to wait before retransmitting ACKs
Input: γ the threshold in bytes to stop tracking flows
Input: φ the dupACK threshold used by TCP flows
Input: t: the current local time counted in jiffies

4 Define x: the exponential backoff counter
5 β = α ∗RTT + rand(RTT);
6 Function Outgoing Packet Event Handler (Packet P)
7 f=Hash(P);
8 if SYN(P) or f.inactive then
9 Reset Flow (f);

10 Extract TCP options (i.e., TStamps, SACK, .., etc);
11 Update the flow information and flag entry as active;

12 if DATA(P) then
13 Update flow info (i.e., last seq#, .., etc);
14 f.active(t)=now();

15 Function Incoming Packet Event Handler (Packet P)
/* For ACKs: extract and update flow

information from incoming headers */
16 if ACK bit set(P) then
17 f=Hash(P);
18 if f.elephant then return ;
19 Extract required values (e.g., seq#, ack#, .., etc);
20 if New ACK then
21 Update flow entry and state information;
22 Update the last seen new ACK from receiver;
23 Reset f.dupACK = 0;
24 Reset f.ACK(t) = now();
25 if f.lastackno ≥ γ then f.elephant = true ;
26 else
27 if Duplicate ACK then
28 f.dupACK = f.dupACK + 1;

/* Drop extra dup-ACKs */
29 if f.resent > 0 then Drop Dup ACK ;

30 Update the TCP headers (e.g., TStamps & SACK);

new flow record; and iii) in (lines 13− 14), if a Data packet
arrives, the last sent seq# and time of the flow are updated.

Next, on each TCP ACK arrival, the code performs the
following actions (lines 16 − 31): i) in (line 17), the flow
entry is identified using its 4-tuple; ii) in (lines 18 − 30) if
ACK sequence number acknowledges a new packet arrival, the
last seen ACK sequence and time is updated. The dupACK
counter is reset. The flow is set as elephant if it exceeds
a threshold γ; iii) in (lines 28 − 30), if ACK number
acknowledges an old packet (i.e., a duplicate ACK), drop
dupACKs if the flow is in recovery mode, or increment the
number of dupACKs seen otherwise; iv) in (lines 31), we
update the TCP headers information of the ACK if necessary.
We discuss this part in more detail later in sec III-C.

Algorithm 2 handles the global (per 1 ms) timer expiry
events and performs the following actions for all active non-
elephant flows in the table: i) in (lines 1 − 10), if no
new ACK acknowledging new data has arrived for β seconds
since the last new ACK arrival, the flow times-out and then
a spoofed ACK using the last successfully received ACK

Algorithm 2: T-RACKs Timeout Handler
1 Create and initialize a timer to trigger every 1 ms;
2 Function Timer Expiry Event Handler
3 for Flow (f) ∈ FlowTable do
4 if !f.Active or f.elephant then Continue ;
5 T = MAX(f.ACK(t), f.active(t));
6 if (t− T) ≥ β then
7 Resend last ACK (φ− f.dupACK) times;
8 Set f.resent(t) = now();
9 Set x = 2;

10 Continue;

11 if (t− f.resent(t)) ≥ (β � x) then
12 resend ACK one more time;
13 x = x + 1;
14 Continue;

15 if (t− f.ACK(t)) ≥ TCPMinRTO then
16 stop RACK recovery;
17 soft reset flow (f) recovery state;
18 Continue;

19 if (t− f.active(t)) ≥ 1 then deactivate flow(f) ;

sequence is crafted. Then, T-RACKs sends it out to the
sending process and/or VM residing on the same end-host.
An exponential backoff mechanism is activated to account for
various dupACK thresholds set by the sender TCP stack or OS.
ii) In (lines 11−14), if with the backed off timer the flow times
out again and yet no new ACK has been received, another
ACK is created and sent out to the corresponding sender. To
ensure T-RACKs is not sending spurious spoofed dupAcks,
the algorithm backs-off exponentially (as shown in line 11),
after each retransmission of dupAck. iii) In (lines 15−18), if
the backoff time approaches the minRTO (i.e., 200ms), we
stop triggering Fast-Retransmit (by resetting the soft state)
and letting the sender TCP RTO handle the recovery of this
segment. iv) In (line 19), if the inactivity period exceeds 1
sec, flow (f) entries are hard reset.

B. T-RACKs System Implementation

T-RACKs (i.e., Algorithm 1) relies on per-flow TCP header
information of ACK packets to maintain per-flow TCP state
information. We propose a light-weight end-host (hypervisor)
shim-layer to implement T-RACKs5. The deployment of T-
RACKs in data centers involves hashing the flows into a hash-
based flow-table using the 4-tuples (i.e, SIP, DIP, Sport and
Dport) whenever SYNs are signaled or a flow sends after a
long silence period. The T-RACKs module uses the FlowTable
to store and update TCP flow information (i.e., the last ack#,
seq#, time, and so on) for each ongoing TCP flow. The module
intercepts the outgoing ACKs and incoming Data to update the
current state of each tracked (non-elephant) flow. Whenever
packets are dropped and the receiver gets enough DATA to
send enough dupACKs (real ones), the loss is recovered by
FRR. In this case, the module does not intervene and the long

5T-RACKs can equally be implemented in the host NIC or in the switching
chip of the ToR switches. This approach is feasible due to the relatively small
number of flows at the end-host NIC or at the ToR level. This hardware
extension is part of our future work.

RTO timeout is avoided. However, when the receiver fails to
receive enough DATA to send dupACKs necessary to trigger
FRR, then T-RACKs intervenes by sending spoofed dupACKs
(or FRACKs) to the sender. Typically, the sender will trigger
FRR to retransmit the lost segment within a reasonable time
before the long TCP RTO is triggered.

C. Practical Aspects of T-RACKs System

T-RACKs System: is built upon a light-weight module
at the hypervisor layer tracking a limited per-flow state, in
the simplest case, it tracks TCP’s identification 4-tuple, per-
flow last ACK number and the time-stamp of the last non-
dupACK. The system in spirit is similar to recent works in
[15, 16] that aim to enable virtualized congestion control in the
hypervisor or enforcing it via the vswitch without cooperation
from the tenant VM. These approaches require fully-fledged
TCP state information tracking and typically implement full
TCP finite-state machines in the hypervisor. On the other hand,
T-RACKs tries to minimize such overhead by tracking the
minimal amount of necessary information and implementing
only the retransmission mechanism.

T-RACKs Complexity: it resides in its interception of
ACKs to update the last seen ACK information. However,
since it does not perform any computation on the ACK
packets6, it does not add much to the load on the hosting server
nor to the latency. This claim is supported by our observation
in our experiments on our data center. A hash-based table is
used to track flow entries of active non-elephant flows. In the
worst case, when hashes collide, a linear search is necessary
within the linked-list. However, this worst case is rare due to
the small number of flows originating from a given end-host.
Typically, end-host CPUs internally can sustain rates of 60+
Gbps of packet processing. Hence, the few processing required
by the program would not affect the achieved TCP throughput.

Spurious retransmissions: T-RACKs may raise concerns
related to the possibility of introducing spurious retransmis-
sions and even making in-network congestion worse. This
boils down to answering similar question when choosing the
correct RTO value in TCP. For this purpose, we refer to a
previous study [17], that essentially showed that even when a
relatively bad RTT estimator is used, setting a relatively high
minimum RTO can help avoid many spurious retransmission in
WAN transfers. This fact is supported by a subsequent study
[18] that shows significant changes (or variance) in internet
delays. Recent works [19, 20] show similar behavior within
current data centers. In our testbed, we observed noticeable
variation in the measured RTT. The empirical data also shows
a considerably large variation in smoothed RTT seen at the
TCP sockets when measured at the time of first transmission
of the packet and the time of fast retransmission or RTO
retransmission, respectively. These variations can be mainly
attributed to the beginning of some heavy background traffic,
imbalance introduced by load balancing, or VM migrations,

6ACKs is updated in certain cases (e.g., to insert fake SACK block to
signify a small gap in the SACKed numbers, otherwise FRACK is ignored)

and so on. We note and agree with the aforementioned works
that observed packet delays may not be mathematically nor
stochastically steady. Hence T-RACKs ACK RTO (β) calcu-
lation shown in Algorithm 1 strikes a balance between rapid
retransmission and the risk of causing spurious retransmission.

T-RACKs RTO β: in most of our experiments and
simulations, we choose a value for ACK RTO (β) to be (≥
10) times the dominant measured RTT in the data center. We
believe, and the results show, that this value achieves a good
tradeoff between not having many spurious retransmission
and at the same time not being too late in recovering from
losses. We further adopt the well-know exponential back-off
mechanism for subsequent RTO (β) calculations until either
the loss is recovered or TCP’s default RTO (i.e., minRTO) is
close enough to timeout.

Synchronization of retransmissions: Since T-RACKs
relies on a timer for ACK recovery, such timer may result
in synchronization of retransmissions from different VMs on
different hosts resulting into incast-like congestion. We studied
the behavior in a simulation and the results show repeated
losses due to possible synchronized retransmissions. A viable
solution to de-synchronize such flows is to introduce some
randomness in the RTO ultimately resulting into fewer flows
experiencing repeated timeouts. We adopted this approach and
added a random delay in the calculation of the RTO β.

TCP Header manipulation: TCP does not accept any
packet with inconsistent timestamp, hence the timestamps are
updated per ACK arrival with the local jiffies variable to
keep the consistency of timestamps whenever FRACKs are
sent. For SACK enabled TCPs, fake SACK block information
needs to be inserted for incoming ACKs (with no SACK
blocks in TCP header) to indicate a small gap equal to the
minimum segment size (i.e, 40 Bytes) after the last success-
fully acknowledged data.

Security Concerns: during FRR to be able to maintain
its flight size and avoid timeout, TCP inflates the window
artificially by 1MSS for each received dupAck. This can be
exploited to launch ACK spoofing attack [21] on the senders.
RFC 5681 released in 2009 addressed this particular attack
and proposed implementing Nonce and Nonce-Reply as a way
of verifying the source of dupACKs. However, such solution
would require introduction of extra TCP headers prohibiting
its deployment in real TCP implementations. In T-RACKs, we
address such attack, by dropping dupACKS whenever the ACK
timer expires when entering a recovery state. This approach
is adopted to disable Cwnd artificial inflation during recovery
and at the same time prevents external ACK spoofing (other
than FRACKs). Worth-mentioning also is that FRACKs are
generated from the hypervisor layer which is under the control
of the trusted datacenter operator.

TCP semantics: is conceptually violated since dupACKs
should reflect packets following the lost one being received
successfully. However, according to RFC 5681 [22], the net-
work could replicate packets and hence the FRACKs could be
treated as replicated packets from within the network.

 0

 50

 100

 150

 200

 250

 20 30 40 50 60 70 80 90 100

Av
er

ag
e

FC
T

in
 (m

s)

Network load
DCTCP

DCTCP-RACK
DropTail
DT-RACK

RED
RED-RACK

(a) Small Flows: Average FCT

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 20 30 40 50 60 70 80 90 100

Av
er

ag
e

FC
T

in
 (m

s)

Network load
DCTCP

DCTCP-RACK
DropTail
DT-RACK

RED
RED-RACK

(b) All Flows: Average FCT

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 20 30 40 50 60 70 80 90 100

Ti
m

eo
ut

s
(#

)

Network load
DCTCP

DCTCP-RACK
DropTail
DT-RACK

RED
RED-RACK

(c) All Flows: Number of RTO

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 20 30 40 50 60 70 80 90 100

Av
er

ag
e

FC
T

in
 (m

s)

Network load
DCTCP

DCTCP-RACK
DropTail
DT-RACK

RED
RED-RACK

(d) Small Flows: Average FCT

 126

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

 20 30 40 50 60 70 80 90 100

Av
er

ag
e

FC
T

in
 (m

s)

Network load
DCTCP

DCTCP-RACK
DropTail
DT-RACK

RED
RED-RACK

(e) All Flows: Average FCT

 0

 50

 100

 150

 200

 250

 300

 350

 20 30 40 50 60 70 80 90 100

Ti
m

eo
ut

s
(#

)

Network load
DCTCP

DCTCP-RACK
DropTail
DT-RACK

RED
RED-RACK

(f) All Flows: Number of RTO
Figure 3: Performance metrics with various network load in range (30%, 90%) of workload 1 and 2, respectively

IV. SIMULATION ANALYSIS

In this section, we study the performance of T-RACKs to
verify if it can achieve its goals in a large-scale simulation
(we will investigate the implementation and deployment in a
small data center later). To this end, we conducted a number
of packet-level simulations using ns2 and compared T-RACKs
performance against the state-of-the-art schemes. (For brevity,
we refer to T-RACKs as RACK in the figures.)

A. Simulations in Data Center Topologies

Since any end-host based scheme is assumed to be scalable,
to verify this, we experiment with T-RACKs in a larger scale-
setup with varying workloads and flow size distributions. We
use a spine-leaf topology with 9 leaves and 4 spines using
link capacities of 10Gbps for end-hosts and over-subscription
ratio of 5 (the typical ratio in current production data centers
is in range of 3-20+). We examine scenarios that cover TCP-
NewReno with DropTail, TCP-ECN with RED and DCTCP.
We use a per-hop link delay of 50 µs, TCP RTOmin is set to
the default 200 ms and the initial window of 10 MSS (similar
to Linux implementation). Persistent connections are used for
successive requests. The flow size distributions of the two
workloads capture a wide range of flow sizes. The flows are
generated randomly from any host to any other host with the
arrivals following a Poisson process with various arrival rates
(λ) to simulate various network loads. The inter-arrival times
distribution is varied to mimic various network loads ranging
from (30% to 90%). Finally, buffer sizes on all links are set to
be equal to the bandwidth-delay product between end-points
within one physical rack. We report the average FCT for small
flows ([0-100KB]) and for all flows (medium [100KB - 10MB]
and large [10MB+]) as well as the number of total timeouts
in each case. We do not use T-RACKs elephant threshold, and
T-RACKs RTO is set to 10 times the measured RTT.

Figure 3 shows the average FCT for small and all flows as
well as the total timeouts experienced by all flows in workloads
1 and 2, respectively. We note in both workloads that small
flows take a great hit in FCT when they timeout regardless of

congestion control and AQM in operation. This is where T-
RACKs comes in help for small flows the most in improving
their FCT by reducing the number of timeouts. We also note
that overall FCT improves for all flows for two reasons:
elephant threshold is disabled (i.e., all flows benefit from
T-RACKs) and small flows finish quicker leaving network
resources for larger ones. We notice that for workload 2 with
almost 80% of flows less than 10KB, hence experiencing lesser
timeouts overall, DCTCP can improve the FCT due to its
ability to regulate the queue at small operating regime.

B. Sensitivity to Choice of T-RACKs RTO

We here repeat the last simulation by varying the value of
the RTT multiplicative factor α in [1, 5, 10, 50, 100] to assess
the sensitivity of our scheme to the RACK RTO. We report
here the achieved FCT of small and all flows in each case for
DropTail, RED and DCTCP. As shown in Fig. 4, the FCT is
greatly affected by the choice of the parameter α. The lower
values of α (i.e., 1 and 5) tend to cause spurious timeouts
and exacerbate congestion in the network. On the other hand,
excessively large values for α (i.e., 50 and 100) tend to be too
conservative and result in TCP flows recovering later than they
could. We can see a value of 10 achieves a good trade-off.

V. LINUX KERNEL IMPLEMENTATION

In this section, we discuss the implementation of T-RACKs
as a loadable Linux kernel module then assess its perfor-
mance using synthetic workloads found in production data
centers [5, 10]. T-RACKs is a shim-layer residing between
the VMs (or TCP/IP stack) and the hypervisor (or link-layer).
We leverage the NetFilter framework [23] which is an integral
part of Linux kernel. The NetFilter hooks attach to the data-
path between the NIC driver and TCP/IP stack which imposes
no modifications to the TCP/IP stack of the host OS nor guest
OS, and being a loadable module, it allows for immediate
deployment in production data centers. The module intercepts
TCP packets incoming to the host or its guests before it
is handed to the TCP/IP stack (i.e., at the post routing).
First, the 4-tuples are hashed and the associated flow index is

 15

 20

 25

 30

 35

 40

 45

30 40 50 60 70 80 90

Av
er

ag
e

FC
T

in
 (m

s)

Network load
RTT

5RTT
10RTT
50RTT

100RTT

(a) Small Flows: DropTail

 60

 70

 80

 90

 100

 110

 120

 130

30 40 50 60 70 80 90

Av
er

ag
e

FC
T

in
 (m

s)

Network load
RTT

5RTT
10RTT
50RTT

100RTT

(b) Small Flows: RED-ECN

 50

 60

 70

 80

 90

 100

 110

 120

30 40 50 60 70 80 90

Av
er

ag
e

FC
T

in
 (m

s)

Network load
RTT

5RTT
10RTT
50RTT

100RTT

(c) Small Flows: DCTCP
Figure 4: The same Websearch scenario as above but using DropTail, RED and DCTCP AQMs and α is varied from 1 - 100 RTTs.

 0

 2

 4

 6

 8

 10

 12

 14

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e F

CT
 w

ith
 E

rro
rb

ar
s (

m
s)

Scheme

(a) Small Flows: Average with Errorbar

 0

 0.5

 1

 1.5

 2

 2.5

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

%
 of

 M
iss

ed
 d

ea
dli

ne
 (>

=2
00

m
s)

Scheme

(b) Small Flows: Missed Deadlines

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e F

CT
 w

ith
 E

rro
rb

ar
s (

m
s)

Scheme

(c) All Flows: Average with Errorbar

 0

 20

 40

 60

 80

 100

 120

 140

 160

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e F

CT
 w

ith
 E

rro
rb

ar
s (

m
s)

Scheme

(d) Small Flows: Average (Datamining)

 0

 0.5

 1

 1.5

 2

 2.5

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e F

CT
 w

ith
 E

rro
rb

ar
s (

m
s)

Scheme

(e) Small Flows: Average (Educational)

 0

 0.5

 1

 1.5

 2

 2.5

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e F

CT
 w

ith
 E

rro
rb

ar
s (

m
s)

Scheme

(f) Small Flows: Average (Private DC)
Figure 5: Performance Metrics of one-to-all scenario without any background traffic.

calculated via Jenkins hash (JHash) [24]. Then, TCP headers
are examined and the right course of action is based on the
flag bits (i.e., SYN-ACK, FIN or ACK) following the logic
in Algorithm 1. Unlike SNOOP [14], the module does not
employ any packet queues to store the incoming packets, it
only stores and updates flow entry states (i.e., ACK No, arrival
time and so on). Also, unlike [12] T-RACKs does not require
fine-grained timers in microseconds time-scale, therefore the
native Jiffies timer is used (e.g., firing every 1ms). T-RACKs
uses a single timer for all flows to handle per-flow RTO events.
These design choices make T-RACKs lightweight and help
reduce the server overhead.

We built a small-scale testbed consisting of 84 virtual
servers each assigned a dedicated physical NIC (14 physical
DC-grade servers equipped with 6 NICs each). The servers are
interconnected via 4 non-blocking leaf switches and 1 spine
switch. The testbed is organized into 4 racks (rack 1, 2, 3 and
4). The servers are connected to leaf switches and leaf switches
are connected to the spine switch via 1 Gbps Ethernet links.
The servers use Ubuntu Server 14.04 LTS with Linux kernel
3.18 which has integrated a full implementation of DCTCP.
Unless otherwise mentioned, T-RACKs runs with the default
settings (i.e., RTO of 4 ms and elephant threshold set to 100
KB). We use the traffic generator described in Section II, to run
the experiments with realistic traffic workloads. In addition,
we have installed the iperf program [25] to emulate long-lived
background traffic (e.g., VM migrations, backups) in certain
scenarios. We use different scenarios to reproduce one-to-all
and all-to-all with/without background traffic. In one-to-all,

randomly chosen clients in one rack sends random request
to any of all the servers in the data center. While in all-to-
all scenario, all clients in the data center send requests to
randomly picked server out of all the servers in the data center.
If background traffic is introduced, we run long-lived iperf
flows in from all clients to all servers to evaluate T-RACKs
under sudden and persistent network load spikes. We classify
flows of size <= 100KB small, > 100KB and <= 10MB
medium and >= 10MB large.

A. Experimental Results and Discussion

One-to-all Scenario without Background Traffic: we
report the performance of average FCT for small flows and
all flows and the number of small flows that missed their
deadlines. We set a hard deadline of 200ms for small flows
however we do not terminate the flow even if it misses the
deadline. The traffic generator is deployed on each single
client running on an end-host in the data center and is set to
randomly initiates 1000 requests to randomly picked servers
on all other racks. Fig. 5a, Fig. 5b and Fig. 5c show the average
FCT and missed deadlines for small flows and the average
FCT for all flows, respectively, in the Websearch workload.
While, Fig. 5d, Fig. 5e and Fig. 5f, show the average FCT for
short flows in data mining, Educational, Private DC workloads,
respectively. We make the following observations: i) for all
workloads, T-RACKs helps small flows regardless of TCP
flavor, on both the average and variation of FCTs. Compared
to Reno, Cubic and DCTCP, T-RACKs reduces the average
FCT of small flows by ≈ (34%, 49%, 19%) for Websearch,
≈ (18%, 29%,−) for Datamining, ≈ (69%,−, 35%) for

 0

 10

 20

 30

 40

 50

 60

 70

 80

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e F

CT
 w

ith
 E

rro
rb

ar
s (

m
s)

Scheme

(a) Small Flows: Average with Errorbar

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

%
 of

 M
iss

ed
 d

ea
dli

ne
 (>

=2
00

m
s)

Scheme

(b) Small Flows: Missed Deadlines

 0

 200

 400

 600

 800

 1000

 1200

 1400

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e F

CT
 w

ith
 E

rro
rb

ar
s (

m
s)

Scheme

(c) All Flows: Average with Errorbar

 0

 50

 100

 150

 200

 250

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e F

CT
 w

ith
 E

rro
rb

ar
s (

m
s)

Scheme

(d) Small Flows: Average (Datamining)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e F

CT
 w

ith
 E

rro
rb

ar
s (

m
s)

Scheme

(e) Small Flows: Average (Educational)

 0

 2

 4

 6

 8

 10

 12

 14

 16

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e F

CT
 w

ith
 E

rro
rb

ar
s (

m
s)

Scheme

(f) Small Flows: Average (Private DC)
Figure 6: Performance metrics of one-to-all scenario with background traffic

Educational and ≈ (−,−, 22%) for Private DC workloads.
We notice that DCTCP improves the FCT over its RENO
and CUBIC counterparts and T-RACKs could improve their
performance in terms of the missed deadlines in Websearch.
The average FCT, in certain cases of Educational and Pri-
vate DC workloads, has seen an increase of FCT with T-
RACKs. In these workloads, the network load is quite light
(as shown by the small FCT without T-RACKs) and hence
the added overhead of deploying T-RACKs module surpasses
its performance gains for these light workloads. ii) for
Websearch workload, T-RACKs reduces the missed deadlines
for short flows by ≈ (55%, 53%, 35%) for RENO, Cubic,
and DCTCP, respectively. iii) T-RACKs improves slightly the
overall average FCT which is attributed to faster FCT of short
flows who leave the network bandwidth for medium and large
flows. The improvement was by ≈ (16%, 5%) for Reno and
Cubic, respectively. However, for DCTCP case, the overall
FCT slightly increases due to the setting of T-RACKs elephant
threshold to only intervene for small flows.
One-to-all Scenario with Background Traffic: to put T-
RACKs under a true stress, we run the same one-to-all scenario
with an all-to-all background traffic. Fig. 6a, Fig. 6b and
Fig. 6c show the average FCT and missed deadlines for small
flows as well as average FCT for all flows in Websearch
and Fig. 6d, Fig. 6e and Fig. 6f show the average FCT for
short flows in data mining, Educational, Private DC workloads,
respectively. We observe the following: i) T-RACKs can
improves the average FCT of small flows for all workloads re-
gardless of TCP congestion control in use. As shown compared
to Reno, Cubic and DCTCP, T-RACKs reduces the average
FCT of small flows by ≈ (38%, 25%, 7%) for Websearch,
≈ (11%, 5%, 3%) for Educational and ≈ (13%, 13%, 4%)
for Private DC workloads. The improvement increases for
Datamining workload to ≈ (36%, 67%, 14%) since it includes
a wider range of short flows. ii) T-RACKs reduces the missed
deadlines for short flows of Websearch by ≈ (40%, 33%, 39%)
for RENO, Cubic, and DCTCP, respectively. iii) T-RACKs
still improves for the overall average FCT ≈ (7%, 5%, 2%)

for Reno and Cubic, and DCTCP respectively.
All-to-all Scenario without Background Traffic: we run the
all-to-all scenario where all clients initiate 1000 requests to any
of all the servers in the data center. Fig. 7a, Fig. 7b, Fig. 7c and
Fig. 7d show the average FCT for short flows in Websearch,
Datamining, Educational, Private workloads, respectively. The
network load is higher given the more complex nature of
this all-to-all traffic, yet, T-RACKs still can deliver significant
improvements of up to 71% in the FCT for all workloads.

VI. RELATED WORK

A number of research works have found, via measurements
and analysis, that TCP timeouts are the root cause of most
throughput and latency problems in data center networks
[12, 26]. For example, [12] showed that frequent timeouts
can harm the performance of latency-sensitive applications.
Numerous solutions have been proposed. These fall into one
of four key approaches. The first mitigates the consequence of
long waiting times of RTO, by reducing the default MinRTO
to the 100 µs - 2 ms [12]. While very effective, this approach
affects the sending rates of TCP by forcing it to cut CWND to
1; it relies on a static MinRTO value which can be ineffective
in heterogeneous networks; and it imposes modifications to
TCP stack on tenant’s VM.

The Second approach aims at controlling queue build up
at the switches by either relying on ECN marks to limit the
sending rate of the servers [5], or using receiver window based
flow control [6] or deploying global traffic scheduling [8, 9].
These works achieved their goals and have shown they could
improve FCT of short flows as well as achieving high link
utilization. However, they require modifications of either the
TCP stack, or introduce a completely new switch design, and
are prone to fine tuning of various parameters or sometimes
require application-side information.

The third approach is to enforce flow admission control
to reduce TimeOut probability. [27] has proposed ARS, a
cross-layer system that can dynamically adjust the number of
active TCP flows by batching application requests based on

 0

 20

 40

 60

 80

 100

 120

 140

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e

FC
T

w
ith

 E
rr

or
ba

rs
 (

m
s)

Scheme

(a) Websearch

 0

 50

 100

 150

 200

 250

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e

FC
T

w
ith

 E
rr

or
ba

rs
 (

m
s)

Scheme

(b) Datamining

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e

FC
T

w
ith

 E
rr

or
ba

rs
 (

m
s)

Scheme

(c) Educational

 0

 2

 4

 6

 8

 10

 12

Reno
Reno-RACK

Cubic
Cubic-RACK

DCTCP
DCTCP-RACK

Av
er

ag
e

FC
T

w
ith

 E
rr

or
ba

rs
 (

m
s)

Scheme

(d) Private DC
Figure 7: The average FCT with errorbars of the small flows: Websearch, Datamining, Educational and Private DC in all-to-all scenario

the sensed congestion state indicated by the transport layer.
The last approach, which is adopted in this paper due to its
simplicity, and feasibility, is to recover losses by means of fast
retransmit rather than waiting for long timeout. TCP-PLATO
[26] proposed changing TCP state-machine to tag specific
packets using IP-DSCP bits which are preferentially queued at
the switch to reduce their drop-probability enabling dupACKs
to be received to trigger FRR instead of waiting for timeout.
Even though TCP-PLATO is effective in reducing time-outs,
its performance is degraded whenever tagged packets are lost,
in addition, the tagging may interfere with the operations
of middle-boxes or other schemes and most importantly it
modifies the TCP state machine of sender and receiver.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied packet losses and the impact
of various recovery methods on the flow performance, and
then proposed T-RACKs, an efficient cross-layer approach for
timely recovery from losses. T-RACKs improves the FCT
of time-sensitive flows and helps avoid throughput-collapse
situations. T-RACKs is deployed either at the sender-side or
the receiver-side as a shim-layer residing between TCP and
the network. Simulation and experimental results show that
the FCT is improved by up to an order of magnitude, missed
deadlines are reduced and high-link utilization is attained. T-
RACKs is shown to be lightweight and practical due to its
minimal footprint on end-hosts. Finally, because it does not
change TCP and adapts to any flavor, T-RACKS is very fit for
multi-tenant public data centers.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” in
Proceedings of USENIX HotCloud, 2010.

[2] M. Mattess, R. N. Calheiros, and R. Buyya, “Scaling MapRe-
duce Applications Across Hybrid Clouds to Meet Soft Dead-
lines,” in Proceedings of IEEE AINA, 2013.

[3] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and
J. K. Ousterhout, “It’s time for low latency,” in Proceedings of
USENIX HotOS, 2011.

[4] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken, “The nature of data center traffic,” in Proceedings
of ACM IMC, 2009.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP
(DCTCP),” ACM SIGCOMM CCR, vol. 40, p. 63, 2010.

[6] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast con-
gestion control for TCP in data-center networks,” IEEE/ACM
Transactions on Networking, vol. 21, 2013.

[7] G. Judd, “Attaining the promise and avoiding the pitfalls of
TCP in the datacenter,” in Proceedings of 12th NSDI, 2015.

[8] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “Deconstructing datacenter packet transport,”
Proceedings of ACM HotNets, 2012.

[9] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-agnostic flow scheduling for commodity data
centers,” in Proceedings of NSDI, 2015.

[10] B. A. Greenberg, J. R. Hamilton, S. Kandula, C. Kim, P. Lahiri,
A. Maltz, P. Patel, S. Sengupta, A. Greenberg, N. Jain, and D. A.
Maltz, “VL2: a scalable and flexible data center network,” in
Proceedings of ACM SIGCOMM, 2009.

[11] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” in SIGCOMM, 2010.

[12] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe
and effective fine-grained TCP retransmissions for datacenter
communication,” SIGCOMM CCR, vol. 39, p. 303, 2009.

[13] D. Nandita, C. Neal, C. Yuchung, and M. Matt, “An algorithm
for fast recovery of tail losses,” https://tools.ietf.org/html/draft-
dukkipati-tcpm-tcp-loss-probe-01.

[14] H. Balakrishnan, S. Seshan, and R. H. Katz, “Improving
reliable transport and handoff performance in cellular wireless
networks,” Wireless Networks, vol. 1, pp. 469–481, 1995.

[15] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi,
N. McKeown, I. Abraham, and I. Keslassy, “Virtualized
congestion control,” in Proceedings of SIGCOMM, 2016.

[16] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter, J. Carter,
and A. Akella, “AC/DC TCP: Virtual Congestion Control
Enforcement for Datacenter Networks,” in SIGCOMM, 2016.

[17] M. Allman and V. Paxson, “On estimating end-to-end network
path properties,” SIGCOMM CCR, vol. 29, pp. 263–274, 1999.

[18] Y. Zhang and N. Duffield, “On the constancy of internet path
properties,” in Proceedings of ACM IMC, 2001.

[19] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz,
Z. Liu, V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien,
“Pingmesh: A large-scale system for data center network
latency measurement and analysis,” in SIGCOMM, 2015.

[20] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats,
“Timely: Rtt-based congestion control for the datacenter,” in
Proceedings of SIGCOMM, 2015.

[21] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “Tcp
congestion control with a misbehaving receiver,” SIGCOMM
Comput. Commun. Rev., vol. 29, no. 5, pp. 71–78, Oct. 1999.

[22] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion
Control,” 2009, https://tools.ietf.org/html/rfc5681.

[23] NetFilter.org, “Packet Filtering Framework,” http://netfilter.org/.
[24] B. Jenkins, “A hash function for hash table lookup,”

http://burtleburtle.net/bob/hash/doobs.html.
[25] iperf, “The Bandwidth Measurement Tool,” https://iperf.fr/.
[26] S. Shukla, S. Chan, A. S.-W. Tam, A. Gupta, Y. Xu, and H. J.

Chao, “TCP PLATO: Packet Labelling to Alleviate Time-Out,”
IEEE JSAC, vol. 32, no. 1, pp. 65–76, jan 2014.

[27] J. Huang, T. He, Y. Huang, and J. Wang, “ARS: Cross-layer
adaptive request scheduling to mitigate TCP incast in data
center networks,” in Proceedings of INFOCOM, apr 2016.

