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Abstract—This paper discusses the implementation of
RWNDQ, a switch-assisted algorithm to improve TCP’s conges-
tion control in data center networks (DCNs). In particular we
demonstrate how this switch-driven congestion control algorithm
can be deployed in a data center via a few simple modifications to
the switch software. The proposed mechanism enables the switch
to modify the TCP receive-window field in the packet headers to
enforce a sending rate at the source, thus avoiding modification
to the TCP source or receiver code. This paper describes in
detail two implementations, one as a Linux kernel module and
the second as an added feature to the well known software switch,
Open vSwitch and presents some experimental results from their
deployment in a small testbed to demonstrate the effectiveness
of RWNDQ in achieving high throughput, a good fairness and
short flow completion times for delay-sensitive flows1.
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I. INTRODUCTION

Data center (DC) environments are used to host a large
number of different applications with heterogeneous traffic
characteristics and performance requirements. These appli-
cations result in a mix of small but time-sensitive traffic
flows such as control-messages or web-search traffic (called
in the sequel mice) and long lived throughput-inclined flows
such as VM-migration (called hereafter elephants). Mice and
elephant flows often co-exist within the same DC Network
(DCN). Unlike the Internet, DCNs which are characterized by
a large bandwidth and small round-trip delay, impose many
new challenges to the overlying congestion control mechanisms
of TCP, mainly because TCP congestion control mechanism
in all its variations i) is unaware to the overlying application
performance requirements and traffic characteristics; and ii) is
typically designed to achieve stability and high bandwidth
utilization, while only targeting in practice fairness for long
live elephant flows under ideal conditions2.

Unlike the Internet that relies on routers with large buffers,
DCNs use switches with small buffers (few megabytes to few
hundred megabytes). Round trip delays in DCNs are short (few
microseconds to few hundred microsecond) with a relatively
large bandwidth (1Gbps to 10Gbps) [1–4]. When such networks

1Manuscript is published in proceedings of IEEE IPCCC15 c©2015 IEEE.
This work is supported in part under Grants: HKPFS PF12-16707, REC14EG03
and FSGRF13EG14

2Mice flows often do not have enough traffic to achieve their traditional
TCP fair share under TCP congestion control

are fed with a mixture of mice and elephants, several congestion
phenomena that cannot be simply inferred from packet losses
and/or delay take place [3–5]: i) Incast traffic congestion:
In partition/aggregate applications (e.g., MapReduce) many
synchronized mice flows compete to exit from the same
congested output port of a switch over a very short period
of time. In the presence of small switch buffers they lead to
excessive packet drops and timeouts; and, ii) Queue-buildup:
the normal behaviour of TCP is to consume the bandwidth-delay
product of the network including the buffer space in the routers
and switches. Elephant flows in particular last long enough
to increase their sending window to achieve this; as a result
mice flows arriving to such bloated buffers experience repeated
packet drops stretching their completion times unnecessarily
due to timeouts.

Due to the impact and severity of these congestion symp-
toms on cloud users’ experience, much recent research work
has been devoted to addressing the shortcomings of TCP in
DCNs. These works can in general be categorized into two
categories: window based schemes (e.g., [4, 6]) and fast loss
recovery schemes (e.g., [2, 7]).

The major drawback common to all these schemes is their
reliance on partial changes to the sender/receiver TCP stack
or for some a total replacement of TCP by a new protocol. In
practice, while many tenants adopt ready-made VM images
from the DCN provider, many elect to upload their own VM
image, others elect to modify or fine tune the parameters of
their VM network stack, and so on. In a nutshell one cannot
assume all VM congestion control mehcanisms in the DCN
are homogeneous, and as result, these solutions, despite their
effectiveness, turn out to be limited to private DCNs where the
TCP protocol is under full control of the DCN provider. To
cope with this limitation we advocate a flow-aware approach
similar to traditional flow-based system like ATM-ABR or XCP
[8], where congestion control in a DCN is treated as a network
problem rather than a transport problem. In this perspective we
proposed in [9] a mechanism called Receiver window queue
(RWNDQ) that proved to be able to achieve a high efficiency
for mice and elephants by keeping a low queue occupancy
as well as a good fairness in both short and long term. We
have also analysed the stability of RWNDQ mechanism using a
simple analytical model and examined its effectiveness through
ns2 simulations comparing it to TCP, XCP and DCTCP [9].
Many challenges remain to deploy such mechanism in real
systems, the most important one being, how to implement
such flow-awareness in the flow-averse IP environment, while



maintaining TCP sender/receiver code untouched and without
storing per flow states in the switches. In our approach, we track
the number of active flows on each switch port by counting
SYN-ACK/FIN TCP packets and rely on the TCP receiver-
window field in the TCP header to convey the fair-share back
to the sources. TCP flow control being a fundamental part
of any TCP variant, our proposed mechanism fits-in without
any change to the sender nor the receiver. We discuss in this
paper how we can achieve this and implement this algorithm
effectively in a real system with the following contributions:

• We describe the implementation of RWNDQ as a run-
time loadable Linux kernel module that can be used as
a standalone buffer management mechanism in software
switches or switches running Linux Network OS3.

• We also describe the implementation of RWNDQ as a new
added feature to the data-path of the well-known industry
standard software switch Open vSwitch (OvS)4 which is
widely used in virtualized data centers.
• Finally, we build a small-scale testbed with 12 servers,

Gigabit-ethernet switches and OvS on all the servers and in
the core switch to study the performance of RWNDQ with
multiple bottleneck links, incast traffic and buffer-bloating
at both the ToR switches and core switches.

Our results show that RWNDQ handles congestion gracefully,
and is able to reconcile mice and elephants by enabling the
former to finish their flows quickly and the latter to achieve a
high throughput and fairness, even when the network is severely
congested.

The remainder of the paper is organized as follow, we
first briefly review RWNDQ in Section II. In Section III, we
discuss the implementation aspects of the Linux kernel module
and show some experimental results. We then show how we
added the RWNDQ as a feature of OvS and discuss testbed
performance results in Section IV. We finally conclude the
paper in V.

II. RWNDQ ALGORITHM
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Figure 1: RWNDQ high level system-view design

RWNDQ system overview is given in Figure 1. RWNDQ
is an algorithm that tries to maintain the queue at the switches
below a given target by adjusting the senders rates. It runs in

3For example, Pica8 pronto-3295: http://www.pica8.com/documents/pica8-
datasheet-48x1gbe-p3290-p3295.pdf

4“Open Virtual Switch Project” http://openvswitch.org/

any switching point and maintains several state variables per
switch port. It intercepts three types of packets and updates
the state information per port accordingly: i) SYN-ACK:
which establishes a TCP flow on both directions (forward and
backward) increments the flow count associated with the output
queues of both directions by 1; ii) FIN: which terminates a TCP
flow on one direction (incoming direction only) decrements
the associated flow count of that queue by 1; and iii) ACK:
which is examined as a candidate to carry back in the receiver
window field (Rwnd) a window update based on a (switch)
local window value of the reverse direction output queue.

RWNDQ is an event-driven scheme that deals with two
major events: packet arrival, and window update timer expiry
events as follows:

A. Window update daemon

As part of the initialization step or if this is the first flow
(based on intercepted SYN-ACK), then the current local window
is initially set to the target-queue occupancy worth of bytes
then, because initially the aggregate bandwidth-delay product
is unknown to the switch, RWNDQ enters a slow-start phase
to start probing for the corresponding window size. Slow-start
phase is terminated as soon as the current queue occupancy
exceeds the predetermined queue target. As shown in listing 1,
RWNDQ implements a local TCP-Like window control loop
that tracks at regular intervals the deviation of the current queue
occupancy from the target one. It calculates a ratio of current
queue over target which directly controls the accumulated
fraction of segments (MSS) added to or subtracted from the
window update variable. The algorithm waits for a number of
successive updates after which the current value of the per-
port local window is updated with the value of update variable
(except during slow start where it adds two MSS to the window).
Note that RWNDQ waits for a number of accumulated updates
before it is used to update the actual value of Rwnd that is
conveyed to the TCP sender. This enables a highly accurate
estimation of the increment, while keeping the number of Rwnd
rewrites in the packet header reasonably small.

1 / / Window Update Daemon
2 hrtimer_restart timer_callback (hrtimer ∗timer )
3 {
4 timerrun= f a l s e ; / / assume no a c t i v e p o r t s
5 / / u p d a t e t h e l o c a l window of a l l a c t i v e p o r t s
6 net_device ∗ dev=first_net_device(&init_net ) ;
7 i=0;
8 w h i l e (dev !=NULL && i<devcount )
9 {

10 i f (dev−>ifindex==devind [i ] && conncount [i]>0)
11 {
12 timerrun= t r u e ;
13 backlog=dev−>qdisc−>qstats .backlog ;
14 / / t a r g e t i s s e t t o 25\% of b u f f e r l e n g t h
15 / / l e f t s h i f t by 2 => d i v i d e by 4 => 25\%
16 target=(dev−>qdisc−>limit )>>2;
17 / / e x i t s l o w s t a r t phase
18 i f (slowstart [i ] && backlog >= target )
19 slowstart [i ]= f a l s e ;
20 / / s l o w s t a r t o f f => i n c / dec u s i n g t h e d i f f e r e n c e
21 i f ( !slowstart [i ] )
22 incr [i ] += target − backlog ;
23 e l s e / / s l o w s t a r t on =>add two segment s
24 incr [i ] += 2 ∗ MSS [i ] ;
25 / / u p d a t e l o c a l window a f t e r M i n c / dec ( s )
26 i f (count == M )



27 {
28 localwnd [i]+=incr [i ] / M ;
29 localwnd [i ]=MIN (localwnd [i ] , 65535 ∗ ←↩

conncount [i ] ) ;
30 localwnd [i ]=MAX (localwnd [i ] , TCP_MIN_MSS ←↩

∗ conncount [i ] ) ;
31 wnd [i ]=localwnd [i ] / conncount [i ] ;
32 incr [i ] = 0 ;
33 }
34 i++;
35 }
36 dev = next_net_device (dev ) ;
37 }
38 / / r e s e t c o u n t e r
39 i f (count == M )
40 count=0;
41 e l s e
42 count++;
43 / / i f t h e r e a r e a c t i v e c o n n e c t i o n s rearm t i m e r
44 i f (timerrun == t r u e )
45 {
46 reschedule_timer (timer ) ;
47 r e t u r n HRTIMER_RESTART ;
48 }
49 e l s e
50 r e t u r n HRTIMER_NORESTART ;
51 }

Listing 1: RWNDQ Window Update Daemon

B. Packet arrival

As shown in listing 2, for each new flow (again based on
intercepted SYN-ACK packets), the current local window of
the incoming and outgoing port is divided equally among all
new active flows. However, for each torn down flow (based on
intercepted FIN packets), the current window of the incoming
port is redistributed equally among all currently active flows.
Finally, If the ACK bit is set, the receive window field Rwnd
of this Packet is updated with the calculated per-port fair-share
local window if it is smaller than the receive window value in
TCP header.

1 / / P a c k e t i n t e r c e p t o r and m o d i f i e r
2 vo id rwndq_packet_arrival (sk_buff ∗skb , net_device←↩

∗in , net_device ∗out )
3 {
4 / / i n => i n d e x i and o u t => i n d e x j
5 / / New c o n n e c t i o n s e t u p
6 i f (tcp_header−>syn && tcp_header−>ack )
7 {
8 conncount [i ] + = 1 ; / / I n c r e m e n t c o n n e c t i o n s o f i n
9 conncount [j ] + = 1 ; / / I n c r e m e n t c o n n e c t i o n s o f o u t

10 i f (conncount [i ] >= 2)
11 wnd [i ] = wnd [i ] ∗ (conncount [i]−1) / ←↩

conncount [i ] ;
12 i f (conncount [j ] >= 2)
13 wnd [j ] = wnd [j ] ∗ (conncount [j]−1) / ←↩

conncount [j ] ;
14 }
15 / / E x i s t i n g c o n n e c t i o n t e a r−down
16 i f (tcp_header−>fin | | tcp_header−>rst )
17 {
18 conncount [i]−=1;
19 i f (conncount [i ] >= 1)
20 wnd [i ]= wnd [i ] ∗ (conncount [i ] + 1 ) / ←↩

conncount [i ] ;
21 }
22 / / Check f o r p o s s i b l e window m o d i f i c a t i o n
23 i f (tcp_header−>ack )
24 i f (wnd [i ] < tcp_header−>window )

25 {
26 __be16 oldwnd = tcp_header−>window ;
27 tcp_header−>window = wnd [i ] ;
28 csum_replace2 (tcp_header−>check ,oldwnd ,wnd [i ] ) ;
29 }
30 }

Listing 2: RNWDQ Packet Intercepter and Modifier

RWNDQ can maintain a very small buffer occupancies
which allows the switch’s small buffer to absorb transient
traffic bursts while keeping the line busy. Therefore it achieves
a high throughput for elephants and very small queuing delay
and low loss probability for mice.

RWQND as discussed uses proportional increase, propor-
tional decrease rather than AIMD. Yet RWNDQ is still stable
due to the locality of window control mechanism with the
managed queues (i.e., local control loop). As soon as the queue
occupancy increase above or decrease below the target threshold,
the local window is shrunk or expanded in proportion, which
ensures an average persistent queue occupancy level equal to
target. Furthermore the increase/decrease amount is equally
divided among all ongoing flows which ensures short and long
term fairness among competing flows unlike end-to-end systems
based on TCP.

III. RWNDQ DATA CENTER WIDE DEPLOYMENT

Switch running Linux NOS 
with RWNDQ Module

RWNDQ-enabled OVS

HyperVisor

VM1 VM2 VM3

Servers -> TOR -> Spine
VMs -> Server -> TOR

Figure 2: RWNDQ-enabled Data Center Architecture

Because of the promising performance shown by RWNDQ
in simulation studies, we have implemented the algorithm in a
real testbed to ascertain and demonstrate its practical feasibility.
Two options were implemented:

• Linux Kernel Module: RWNDQ can be implemented using
the Linux NetFilter framework 5 as the NetFilter is a good
candidate for intercepting incoming and outgoing packets.
Also the NetFilter enables incrementing the protocol stack
very easily via pre-registered hooks in the processing
pipeline of the network stack;

• Open vSwitch: RWNDQ can also be implemented as an
added feature to OvS by patching the OvS data-path kernel
module to add RWNDQ’s processing logic.

Typically, a data center network consists of servers and
switches interconnecting them. In oversubscribed data centers,

5NetFilter: Packet filtering framework for linux http://www.netfilter.org/



the contention points in the network, are within the server on
the outgoing interfaces between competing VMs and on the
uplinks to upper layers (i.e the link from Top of Rack switch to
the core switch) where multiple servers in a single rack share
the uplink reach servers in other racks. In our RWNDQ system
design, as shown in Figure 2, we propose to use hardware
switches running Linux Network OS such as Open Networking
Linux (ONL) 6 or PicOS 7 on ToR and spine level hardware
switches to interconnect servers within the racks. The switches
with PicOS can support RWNDQ as a loadable kernel module
or as a patched Open vSwitch. In addition, VMs within servers
are interconnected via a software OvS which is the most popular
choice for most cloud management frameworks like OpenStack.
RWNDQ as a kernel module and OvS-patch provide a potential
for an easy deployment in production data centers at all different
switching levels and possible congestion points in the network.

A. RWNDQ as a loadable kernel module

Local TCP/IP stack

RoutingPrerouting
Forward RWNDQ Hook

(packet interceptor)

Input
Output

Postrouting

Window 
Update 
Daemon

Figure 3: NetFilter-based RWNDQ packet processing pipeline

RWNDQ as a loadable kernel module is implemented using
the NetFilter framework of the Linux operating system. In a
non-virtualized environment, RWNDQ works as a hook that
attaches to the data forwarding path in the Linux kernel just
above the NIC driver and below the TCP/IP stack. This is a
clean way of deploying RWNDQ which does not touch the
TCP/IP implementation of the host operating system, making
it easily deploy-able in production DCNs. In what follows,
we introduce our Linux implementation which is used in this
section’s experiments.

RWNDQ is implemented as a NetFilter hook as shown in
Figure 3. We insert the NetFilter hook at the forwarding stage
of packet processing to intercept all forwarded TCP packets
not destined to the host machine. Forwarding stage is executed
right after the routing decision has been taken and immediately
before the post-routing processing. As explained previously
in the RWNDQ algorithm in section II, TCP packet headers
are examined and the processing is determined based on the
SYN-ACK, FIN and ACK flag bits. In addition, since in DCNs
transmission and propagation delays are in the microsecond
time scale, Linux kernel timers based on the HZ tick rate
traditionally used in the protocol stack and the OS, are not
accurate enough to keep track of the queue occupancy as they

6Open Network Linux http://opennetlinux.org
7PicOS: http://www.pica8.com/white-box-switches/white-box-switch-os.php

are in the millisecond time scale; therefore, we invoke Linux
high-resolution timers to deal with this8. The high resolution
timer shown in the figure as “Window udpate daemon” is used
to trigger switch’s local per-port receiver window values updates
based on the observed queue occupancy more accurately. The
operations of the RWNDQ kernel module are described as
follows:

• When a SYN-ACK packet is captured by the NetFilter
hook, we increment the connection counter for both the
ingress and egress Ethernet port and update their local
window variables respectively9. Note that, SYN-ACK
packets is sent only when TCP connection is established
by the destination host of the connection and by default
all TCP connections are full-duplex.

• When a FIN packet is captured by the NetFilter hook,
we decrement the connection counter for the ingress port
only and update its local window variable. Note that, FIN
packets are sent only when one side of the TCP connection
finishes the transport of its application data and the other
side of the TCP connection can still send data while the
host which sent the FIN operates in half-closed state until
it receives a FIN from its partner.

• When an outgoing ACK packet is captured by the
NetFilter hook, its receive window in TCP header will
be checked against the local window, then the receiver
window value is updated only if the local receive window
value, pre-computed by the RWNDQ local window update
mechanism, is smaller.

• If the window is updated, the checksum of the packet is
recomputed which is done using a kernel built-in function

”csum replace2”, which implements the update efficiently.
• The high resolution timer is responsible for triggering the

local window update function on regular intervals, it is
triggered on intervals smaller than the measured RTT in
the network, in our setup RTTs are observed to be within
a few hundred microseconds.

• For each timer expiry, we calculate the increment value
using the method described in RWNDQ algorithm in
Section II.

• When the timer expires M times consecutively, the local
window value is updated using the accumulated increment
values over the last M intervals, the increment variable
is reset and a new window update cycle starts from this
point.

B. Testbed setup

To experiment with the Linux RWNDQ kernel module, we
set up a single bottleneck testbed as shown in Figure 4. The
testbed consists of 6 Lenovo and 7 Dell desktops configured
with core2duo processors and 4G of ram. One of the Dell
desktops acts as the switch and it is equipped with 3 1Gbps
Ethernet cards. In this setup, 5 machines and the switch are
running Ubuntu 14.04 Desktop Edition with Linux kernel
V3.13.0.34, while the other 6 machines and the receiver (master)
are running CentOS 6.6 with Linux kernel V3.10.63. All
machines are running an Apache web server hosting the default

8https://www.kernel.org/doc/Documentation/timers/hrtimers.txt
9Note that, assuming current window value is in a stable state and optimal,

by adding or deleting a TCP connection, the window value needs to be
redistributed equally and fairly over the new number of active TCP flows
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Figure 4: A dumbell-like setup to test RWNDQ Kernel Module

small ”index.html” webpage of size 11.5KB. We rely on two
well-known measurement applications for our experiments, iperf
[10] for generating elephants and Apache benchmark [11] for
generating synchronized mice. The base RTT in our testbed is
around ≈200µs. We allocate a static buffer size of 85.3KB to
all ports in the network using Linux Traffic Control (Linux TC).
In all experiments, we set up the queuing discipline Qdisc of
each Ethernet port in the network to bfifo queue with limit of
85.3KB bytes. This value matches the buffer size for each port
in a switch like pronto 3295, that has 4MB of shared buffer
memory used by 48 ports, leaving a buffer of 85.3KB for each
port on the switch. We evaluated the experiments with both
cubic TCP and new-reno TCP, the only available congestion
control mechanisms in both Linux kernel versions (3.10 and
3.13).

C. Experimental Results

Eleven iperf traffic flows (elephants) are started at the
same time from each of the senders towards the receiver
which is connected to one of the switch ports.The flows send
continuously for 50 secs and throughput samples are collected
over 0.5 secs intervals. At the 20th second, each sender starts
Apache Benchmark to request ”index.html” 1000 times (mice)
and report statistics on the completion times.
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Figure 5: Elephant TCP flows performance: RWNDQ vs FIFO in a
the Linux testbed with one bottleneck-link with new-reno
and cubic TCP sources

Figure 5a and 5b show that RWNDQ helps both TCP
variants to achieve a very close fair-share throughput to TCP-
FIFO yet reduces the variations of the reclaimed throughput
during elephant sessions, even with sudden surges of mice
traffic. Figure 5c shows RWNDQ’s ability to significantly
reduce packet drops at the bottleneck link by ≈ 80− 85%.
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Figure 6: Mice TCP flows performance: RWNDQ vs FIFO in a the
Linux testbed with one bottleneck-link with new-reno and
cubic

The reduction of packet drops benefits mice flows by
avoiding unnecessary timeouts. As Figure 6a shows, mice tail
flow completion time (FCT) is less than 200ms, which is the
default RTOMin in Linux. Finally, according to Figure 6b,
RWNDQ allows competing mice to finish quickly and at
approximately the same time.

IV. RWNDQ-ENABLED OPEN VSWITCH

We further investigated the implementation of RWNDQ in
OvS as this latter already implements SDN based flow tracking.
We patched the Kernel data-path modules of OvS with the
same functions described earlier in the RWNDQ Linux-kernel
module. In this case however, we did not use the NetFilter
hook, we instead added RWNDQ functions in the processing
pipeline of the packets that pass through the kernel datapath
module of OvS. In a virtualized environment, RWNDQ-enabled
OvS can process the traffic for inter-VM, Intra-Host and Inter-
Host communications. This is an efficient way of deploying
RWNDQ on the host operating system of the switch by only
applying a patch and recompiling OvS module, making it easily
deploy-able in today’s production DCs.

As show in Figure 7, OvS is mainly composed of two parts,
the data path kernel module and the user-space vSwitch daemon
that communicates with the controller using OpenFlow protocol
over encrypted SSH connections. OvS is flow-aware by design
and all flow decision entries in the forwarding table are inserted
by a local or a remote controller. Whenever, a packet arrives
at any port of the switch, its flow key is hashed and examined
against current active flows in the table. If the entry for that
flow could not be found, the packet is immediately forwarded
to the controller for establishing the identity of this flow and
setting up the forwarding entries in all involved switches of the
network. Primarily, any packet is processed by the kernel fast
data-path only if its flow entry is active in the forwarding table,
in such case, the packet is forwarded immediately without
experiencing any further delays. RWNDQ’s packet interceptor
and its packet handling logic described in Section III-A are
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inserted in processing of do output action function as shown
in Figure 7b. TCP packets being forwarded are intercepted and
their window is updated if necessary. Local per-port window
values are updated on a regular basis by the window update
daemon.

A. Testbed Setup
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Figure 8: Small testbed for RWNDQ-enabled OvS

For experimenting with our patched OvS, we set up a
testbed as shown in Figure 8, it is similar to the testbed in
Section III, however, in this case, all machines’ internal ports
are connected to the patched OvS and the CentOS and Ubuntu
hosts are connected to different 1 Gb/s D-Link dumb-switch.
Here also, different scenarios are set up to reproduce both incast
and buffer-bloating situations, however in this case multiple-
bottleneck links in the network exist as shown in Figure 8.
The bottlenecks at the senders are created by creating multiple
ports on the OvS and binding an iperf or an Apache process
to each one of them.

B. Experimental Results

The goals of the experiments are to: i) show that with the
support of RWNDQ, TCP can support many more connections
and maintain high link utilization; ii) show that with the support
of RWNDQ, TCP can overcome incast congestion situations
in the network; iii) measure RWNDQ’s impact on the FCT
of mice flows; and, iv) explore RWNDQ’s performance in
buffer-bloating situations where mice compete with elephants.

1) Incast Scenarios: We produce an incast-like scenario
with synchronized senders all converging to the same output
port resulting in excessive pressure on the output buffer in links
1-5 as well as link 6. First, we generated 10 iperf clients at same
time from each of the 5 senders destined to a separate iperf
server listening on a separate port on the receivers. This results
in 50 senders continuously sending for 50 secs and iperf is set
to generate the throughput samples over 0.5 sec intervals. In the
following we show the CDF of the average achieved throughput,
the variance of the throughput samples and the total packet
drops experienced at the bottleneck links during the experiment.
Figure 9 shows that in a medium load situation, RWNDQ helps
TCP in achieving a balanced distribution of bandwidth among
competing senders and reduces the variations of their reclaimed
bandwidth during the lifetime of a TCP connection. Table Ia
clearly shows how RWNDQ switch queue management is
able to reduce the number of packet drops at bottleneck links
by ≈ 92 − 99% (nearly two orders of magnitude), reducing
considerably unnecessary timeouts for TCP connections and
allowing the flows to finish at approximately the same time.
This due to RWNDQ dividing the effective window (bandwidth-
delay product + target buffer length) equally among competing
flows, allowing them to achieve nearly the same throughput
and hence very similar flow completion times.
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Figure 9: Comparison of TCP’s performance with RWNDQ vs. FIFO
with 50 elephants

We repeat the same experiment but this time we increase the
number of iperf (elephant) senders per host to 40 (resulting in a
total 200 elephants). Again, Figure 10 supports our claims, and
shows that even in a high load, RWNDQ still helps TCP (new-
reno and cubic) achieve a balanced distribution of bandwidth
and maintains a very low variation of throughput for TCP
connections involved in the incast. We observe that the variation
for some TCP flows without RWNDQ reaches ≈400Mbps, the
reason being, for some time intervals, a few flows grab most of
the bandwidth while the others achieve nearly zero throughput.
Table Ib shows that RWNDQ is still able to keep a very low
packet drop rate by one order of magnitude compared to TCP
without the assistance of RWNDQ mechanism at the switch.



Table I: Number of packet drops experienced at each of the 6 bottleneck links labeled 1 to 6 in Figure 8

(a) 50 elephants scenario
Reno Cubic

RWNDQ FIFO RWNDQ FIFO
1 10 4992 33 4605
2 5 4913 21 4548
3 10 4676 19 4319
4 18 4860 29 4530
5 12 4857 44 4520
6 531 331 320 357

(b) 200 elephants scenario
Reno Cubic

RWNDQ FIFO RWNDQ FIFO
1 1750 30934 2184 30422
2 1671 30851 2361 30767
3 2544 27486 2418 28276
4 1632 30620 2152 30210
5 1547 30860 2249 30540
6 3394 12901 3516 23432
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Figure 10: Comparison of TCP’s performance with RWNDQ vs. FIFO
with 200 elephants

2) Buffer-Bloating Scenarios: We reproduce a buffer-
bloating scenario in which mice traffic compete with elephant
flows to see if RWNDQ can reconcile the two classes. Similar to
the previous experiment, we first generate 10 synchronized iperf
elephant connections continuously sending for 50 secs from
each sender resulting in 50 elephants at link 6. We use Apache
benchmark to request ”index.html” webpage (representing mice
flows) from each of the web servers (6 × 5 = 30 in total)
running on the same machines where elephants are sending.
Note that, we run Apache benchmark, at the 20thsec, requesting
the webpage 1000 times then it reports different statistics over
the 1000 requests. The performance of elephants was close to
what has been presented in the incast scenario experiments.
Now, Figure 11 shows that, in medium load, RWNDQ achieves
a good balance in meeting the conflicting requirements of
elephants and mice. The competing mice flows benefit under
RWNDQ by achieving a nearly equal FCT on average with
very small standard deviation compared to TCP with FIFO
as shown in Figure 11a and 11b. In addition, as RWNDQ
efficiently regulates the flows and keeps the drop rate near to
zero, in Figure 11c, the 99th percentile for RWNDQ never
crosses the 200ms threshold which is the default RTOmin of
Linux, as opposed to TCP with FIFO which can be attributed
to the timeouts caused by high drop rates. In Figure 11c, the
maximum FCT ≈ 40− 60% of the flows are below the 200ms
with RWNDQ compared to only ≈ 1 − 18% for TCP with
FIFO.

Again, we repeat the high load experiment with 200
elephants and introduce the 30 competing mice. As shown
in Figure 12, RWNDQ is able to satisfy the requirements
of latency-sensitive mice even-though they are outnumbered
by elephants. Figure 12a and 12b show that mice flows are
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Figure 11: Comparison of mice FCT for RWNDQ vs. FIFO where
50 elephants compete with 30 mice

not blocked by the bandwidth-hogging elephants. The mean
FCT under RWNDQ are small and the CDF curve is smooth,
according to the standard deviation, in contrast to what is
achieved with FIFO. In addition, Figure 12c and 12d show that,
the tail and the 99th percentile of the FCT of TCP with FIFO
is experiencing timeouts as indicated by FCT values of over
250ms. Meanwhile RWNDQ avoids timeouts by managing the
queue efficiently and hence it greatly reduces the FCT of mice
on the tail 99th percentile on average by ≈ 60%.

3) RWNDQ system overhead: To quantify system overhead
introduced by the RWNDQ packet intercepting and modifying
module, we measured CPU usage on the server operating as the
switch between the other servers which is equipped with Intel
Core2 Duo CPU running at 2.13GHz and 4 GBytes of Ram. We
rerun the high load experiment with 200 elephants and the 30
competing mice. We achieved a high link utilization of ≈ 900-
935 Mbps goodput while the extra CPU usage introduced by
RWNDQ is ≈ 1% compared with the case where the RWNDQ
module is not enabled.



 0

 0.2

 0.4

 0.6

 0.8

 1

 22  24  26  28  30

C
D

F

Mean FCT (ms)

RWNDQ-cubic
RWNDQ-reno

FIFO-cubic
FIFO-reno

(a) Average mice FCT

 0

 0.2

 0.4

 0.6

 0.8

 1

 20  40  60  80  100  120

C
D

F

FCT Standard Deviation (ms)

RWNDQ-cubic
RWNDQ-reno

FIFO-cubic
FIFO-reno

(b) SD deviation of mice FCT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

C
D

F

99th percentile FCT (ms)

RWNDQ-cubic
RWNDQ-reno

FIFO-cubic
FIFO-reno

(c) 99th percentile mice FCT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200  1400

C
D

F

Max FCT (ms)

RWNDQ-cubic
RWNDQ-reno

FIFO-cubic
FIFO-reno

(d) Max mice FCT

Figure 12: Comparison of mice FCT with RWNDQ vs. FIFO where
200 elephants compete with 30 mice

4) Summary of the experimental Results: In summary
the experimental results reinforce the results obtained in the
simulation study conducted in [9]. In particular, they show that:

• RWNDQ helps in reducing mice traffic latency and
maintains sufficient throughput for elephants. In the
experiments both elephants and mice are able to achieve
their requirements as stated in the Introduction.

• RWNDQ can easily handle congestion, in low to high load
incast or buffer-bloating scenarios, while nearly saturating
the link at rate of ≈ 900-935 Mbps, which matches our
findings from our NS-2 simulations.

• RWNDQ achieved all this without any modification to the
TCP congestion control mechanism at the source nor to
the receiver and seems to scale well in our testbed.

V. CONCLUSION AND FUTURE WORK

In this paper, we set to demonstrate the implementation
for RWNDQ mechanism and its immediate operability in data
center networks. RWNDQ is designed to reconcile the non-
compatible requirements of elephant flows and mice flows
that account for the majority of datacenter traffic. RWNDQ
is designed to maintain a small persistent queue size to leave
room in the buffer to absorb sudden transient bursts of incast
traffic. Hence, it can decrease the average flow completion time
of mice flows, yet maintain a high throughput for elephants.
RWNDQ is a switch-assisted congestion-control system that
builds on top of the existing flow-control of TCP to feedback
queue occupancy levels to TCP senders. RWNDQ is designed
to avoid any modification to the VM TCP protocol as a result it
can be adopted easily for public DC networks where different

TCP variations co-exist. To prove the realistic feasibility of
our approach, we implemented RWNDQ as a standalone Linux
kernel module easily deployable on hardware switches running
a Linux network OS or as an added feature to the well known
open vSwitch kernel data-path module for deployment in
current virtualized DC networks. The results of our experiments
strongly suggest that a switch-based approach like RWNDQ is
a good approach to handle incast and buffer-bloating situations
simultaneously.
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