
Reconciling Mice and Elephants in Data Center
Networks

Ahmed M. Abdelmoniem and Brahim Bensaou
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
{amas, brahim}@cse.ust.hk

Abstract—Small switch buffers, high-speed links, short round-
trip times and the composite nature of the traffic in data center
networks (DCN) lead to several congestion problems that are not
handled well by traditional congestion control mechanisms such
as TCP. In this paper we design a simple switch-driven, flow-
aware, congestion control algorithm to deal with such congestion
issues. The basic idea of the proposed mechanism is reminiscent
of classic congestion control in flow-aware networks such as
ATM-ABR, where the switch sets a field in packet headers to
enforce the sending rate at the source; less classic though are the
challenges faced in designing such flow-awareness in the flow-
aversive IP environment without modifying the TCP sender and
receiver algorithm, to enable deployment in public data centers.
We discuss in this paper our algorithmand give numerical results
from NS-2 simulations to show its effectiveness in achieving high
throughput overall, a good fairness and short flow completion
times for delay-sensitive flows1.

Keywords—Congestion Control, Data Center Networks, Flow
Control, Kernel Module, OpenvSwitch

I. INTRODUCTION AND BACKGROUND

Cloud computing is usually host to a plethora of applications
with non-homogeneous network traffic characteristics and per-
formance requirements. These applications range from transac-
tional, time-sensitive applications such as web searches, to bulk
transfers time-insensitive, throughput-addicted applications such
as backups. From the network traffic perspective, transactional
applications are often executed by several workers, that generate
several small traffic flows (called mice in the sequel), whose
merger and consolidation produces the application data. This
is typical of today’s web searches, social networking, and
MapReduce jobs. Such applications require not only a timely
delivery of their traffic, to meet the end user delay requirement,
but also a small jitter between the traffic flows, to improve the
quality of the results: for instance web search results that arrive
too late are discarded. On the other hand bulk transfers (called
in the sequel elephants) require no delay guarantee but are
only effective if provided with a high and sustained throughput.
These are typical of backups, data migration, and data center
(DC) synchronization.

The co-existence of such synchronous mice and bulky
elephant flows with various performance requirements, in the
presence of the large bandwidth and small round-trip delays

1Manuscript is published in proceedings of IEEE CloudNet15 c©2015 IEEE.
This work is supported in part under Grants: HKPFS PF12-16707, REC14EG03
and FSGRF13EG14.

experienced in DCNs (tens to hundreds of microseconds), pose
great challenges to traditional congestion control mechanisms
such as TCP. In particular, the switch buffers and the round trip
delays being small in typical DCNs [1, 2], several congestion
symptoms that cannot be simply inferred from packet losses,
appear, and require specific treatment to avoid congestion
collapse. Most prominently: i) Incast traffic congestion, where
many correlated mice flows converge onto the same congested
output port of a switch over a short period of time, typically
as a response data for partition/aggregate type of applications.
These are very commonly found in data centers; and, ii) Queue-
buildup/Buffer-Bloating that occurs as a normal behaviour
of TCP when the buffer space of the port (in deep buffered
switches) or the buffer space of the switch (in shallow buffered
switches) is occupied by elephant flows, leading mice flows to
experiencing repeated packet drops and unnecessary increase
in queuing delays.

Due to the impact and severity of these congestion symp-
toms, much recent work has been devoted to addressing such
shortcomings of TCP in DCNs. Most of the proposed solutions
fall in two categories: window based schemes (e.g., [2, 3]) or
fast loss recovery schemes (e.g., [4, 5]).

In the window-based category, DCTCP [2] proposes a
modification to TCP and RED active queue management that
adjusts TCP’s congestion window to stabilize the queue length
in the switch at a predefined small threshold, guaranteeing
thus short delays for incast traffic, without degrading the link
utilization. ICTCP [3] also was proposed as a modification to
TCP receiver to handle incast traffic. ICTCP adjusts the TCP
receiver window proactively, to avoid congestion at the receiver.
The experiments with ICTCP in a real testbed show that ICTCP
can almost curb timeout-detected losses and achieves a high
throughput for TCP incast traffic, however, since it is focused
on incast it only handles congestion at the receiver and does
not address buffer buildup in the switches.

Fast loss recovery schemes try to improve the agility of TCP
in recovering from congestion events by shortening the reaction
time. For instance, [4] reduces TCP’s minimum retransmission
timeout RTOmin to reduce the unnecessarily long waiting
times after packet losses to enable a fast reaction to congestion
losses in the presence of shallow buffers (where losses are
mostly detected by timeout). In contrast [5] cleverly tries to
deploy a fast congestion-detection mechanism by truncating the
packet payload of congestion-causing packets, only conveying
the header to the receiver. This enables a receiver-driven explicit

congestion-notification upon reception of truncated packets.
Fast loss recovery schemes potentially solve the problems of
congestion in data centers, however, they require not only switch
modification, but also end-system modifications. For example,
in Linux RTOmin is equal to 200ms and is hard-coded in the
TCP source code.

While both categories achieve better performance than
traditional TCP, they still suffer an important drawback inherent
to their methodology: typically, in public data centers, especially
those providing infrastructure as a service (IaaS), many different
guest operating systems can co-exist each allowing many
different versions of TCP to be used. The guest OS can also be
uploaded by the tenant and the TCP configuration parameters
can also be tuned by the end user. In addition, the client in
many public data center applications in platform or software as
a service (PaaS and SaaS) can often be outside the data center
(e.g., cloud-based intrusion detection systems, web servers, and
so on). This renders modification to the TCP sender, receiver
or timer only feasible in privately owned data centers including
the guest OS.

Despite these drawbacks, the improved performance shown
by all these schemes is compelling evidence to investigate
further the problems of congestion in DCNs with the aim of
designing an effective solution to the problem that does not
require modification to the TCP sender, nor to the receiver. In
contrast, since the switches, routers and servers in any DCN
belong to the same administrative entity, we explore a solution
that only relies on simple modifications to the switch software
and/or server hypervisor/host OS.

With this objective in mind, in this paper, we take a flow-
aware approach similar to traditional flow-based systems like
ATM-ABR or XCP [6]. The challenge that arises however is
how to deploy such flow-awareness in the flow-aversive IP
environment without modifying the TCP sender and receiver.
This disqualifies XCP, as it is a clean-slate redesign that
requires not only changes to the routers but also to the sender
and receiver. To achieve our goal, the switch/router must be
able to track flows, calculate a fair share for each flow that
traverses it, and must have means to convey back this fair
share to the source. In our approach, we invoke SDN ability
to track flows to enable our network with flow awareness, and
modify the switch software to rewrite TCP receiver window
to communicate with the sender. TCP flow control being a
fundamental part of any TCP incarnation, including XCP, our
proposed mechanism would fit-in without any change to the
end-hosts. Our contributions in this paper are two-fold:

• We first propose a simple switch-based congestion control
mechanism called Receiver window queue (RWNDQ) that
achieves a high efficiency by maintaining the queue occupancy
within a predetermined target level; achieves a good fairness in
both short and long term; and ensures mice flows complete their
flow in a short time.

• We analyse the stability of our mechanism using a simple
mathematical model and examine its effectiveness via extensive
simulations in ns2, comparing it to TCP, DCTCP and XCP.

The remainder of the paper is organized as follows, we first
discuss our proposed methodology and present the proposed
RWNDQ switch queue management algorithm in Section II.
We further develop a simple analytical model of RWNDQ
to study its convergence in III, then evaluate its performance
via simulation and compare it to alternative approaches in IV.

finally conclude the paper in V.

II. RWNDQ ALGORITHM

A. Proposed methodology

TCP is a full-duplex protocol where the two receiving end-
points allocate a receiving buffer space to enable flow control.
To this end, the receiver of one direction sends back to the
sender acknowledgement packets (ACKs) that include, in the
16 bit ”Receive Window” field (Rwnd), the currently available
buffer space.

In our approach we propose to overwrite Rwnd and the
scaling option value n to indicate the bottleneck fair share
of bandwidth available for a given flow on a given path
between the source and destination. As the ACK from a receiver
traverses the switches in the reverse path towards the sender,
each switch examines the packet and modifies the Rwnd value
taking into account the window scaling value if necessary. More
specifically, at each switch along the end to end path:

1) Before an ACK is forwarded to the output port on the reverse path,
the available buffer space in the port that holds the corresponding
data in the forward path is sampled.

2) Based on the number of ongoing flows and the target queue
occupancy, the Rwnd field in the ACK header is rewritten with
the flow’s fair share, if this latter is smaller than the current
value of the receiver window.

3) As the ACK travels across the switches/routers along the reverse
path, Rwnd is updated with the bottleneck fair share for the flow.

4) Since a TCP sender’s rate is limited by the minimum of the
current congestion window and the receiver window, in the
absence of losses, after the slow start phase, it is expected that
the sender window will be limited by the receiver window field
which reflects the bottleneck link fair share.

B. RWNDQ Algorithm

The main variables and parameters used in RWNDQ
algorithm are described in Table I. Note that T , M and α
are parameters of the algorithm that can be chosen by the DCN
administrator.

Table I: Variables and Parameters used in Algorithm 1

Paramter name Description
T Timeout value for window increment interval
M Number of increment intervals to wait for an update
α Target level of queue occupancy

Variable name Description
QRwnd Common receive window value for all flows
Qfcount Number of current ongoing flows
Qlen Current length in bytes of the output queue
Qlimit buffer size on the reverse path
Qratio Ratio of divergence from the target queue size
Wincr Window increments of one update interval
P a packet

ReceiveWnd(P) Rwnd and the scaling factor of packet P

RWNDQ shown in Algorithm 1 is event-driven and runs on
each port of the switch to respond to two major events: packet
arrivals, and window increment timer events to trigger window
updates.

Upon a packet arrival: the algorithm updates the maxi-
mum packet size seen so far. If this is the first flow, then the
current window is initially set to the target-queue worth of bytes

Algorithm 1 RWNDQ Algorithm
1: procedure PACKET DEPARTURE(P)
2: if Max Size < Size(P) then
3: Max Size← Size(P)

4: if SY N −ACK bit set(P) then
5: if Qfcount = 0 then
6: QRwnd ← α×Qlimit
7: else
8: QRwnd ← QRwnd ×

Qfcount

Qfcount+1

9: Qfcount ← Qfcount + 1
10: else if FIN bit set(P) then
11: Qfcount ← Qfcount − 1
12: if Qfcount > 0 then
13: QRwnd ← QRwnd ×

Qfcount+1

Qfcount

14: else
15: QRwnd ← α×Qlimit
16: else if ACK bit set(P) then
17: if QRwnd < ReceiveWnd(P) then
18: ReceiveWnd(P)← QRwnd
19: procedure WINDOW INCREMENT TIMEOUT
20: Qratio ← 1− Qlen

(Qlimit×α)
21: Wincr ←Wincr +

Qratio×Max Size
M

22: interval count← interval count+ 1
23: if interval count ==M then
24: if slowstart then
25: QRwnd ← QRwnd + 2×Max Size
26: if Qlen ≥ α ∗Qlen then
27: slowstart← FALSE
28: else
29: QRwnd ← QRwnd +Wincr/Qfcount
30: interval count← 0
31: Wincr ← 0

then RWNDQ enters the slow-start phase to start probing for
the current window size, because initially the bandwidth-delay
product is unknown to the switch. Subsequently, for each new
flow, the current window is divided equally among all flows.
If the ACK bit is set, the receive window field Rwnd of this
Packet is updated with the current local window QRwnd .

Upon Window increment timer elapse: Qratio is calcu-
lated to track the deviation of the current queue length from
the target. The ratio controls the fraction of segments (MSS)
added or subtracted from the current value of Qincr. After
M such updates, the current value of the common receive
window is updated. In slow start, RWNDQ adds two MSS
to the window, otherwise it adds the current Qincr value to
the window. Notice that the value of the window increment
is updated M times before it is reflected in the actual value
of Rwnd that is conveyed to the TCP sender. This enables a
highly accurate estimate of the increment, while keeping the
number of Rwnd rewrites in the packet header reasonable.

RWNDQ maintains a very low loss probability and enables
the switch buffers to absorb sudden traffic bursts while
achieving a high utilization. Therefore it is appealing for
handling the co-existence of mice and elephants. RWQND
adopts a proportional increase, proportional decrease approach.
As soon as the queue length exceeds the target queue length,
the window is shrunk in proportion to the excess and vice-versa.
Furthermore the increase/decrease amount is equally divided
among all ongoing flows. Initially and whenever the number of

ongoing flows drops to 0, the algorithm goes into the slow start
mode, where the window is increased by 2 MSS in each update
period. When the queue exceeds the target, the algorithm goes
into congestion avoidance, where the window increment is
proportional to the gap between the current queue length and
the target queue length.

C. Discussion, Drawbacks, Practical Solutions and Complexity

In principle RWNDQ is very effective in solving the
problem of congestion, and actually avoiding it outright when
there is no sudden traffic surge. However, to enable its practical
deployment, i) the ACK packets must travel back along the
reverse path taken by the corresponding data packets, ii) the
switch must be able to track the number of ongoing flows; and,
iii) the switch must be aware of each flow’s window scaling
factor to avoid semantic mismatches between the source and
the switch on the value in Rwnd .

Two approaches are possible to achieve the first two
requirements: either implement flow-awareness in the open
source network OS of bare-metal switches, or, since SDN
based switches are more common nowadays, one can rely on
the functions already provided by SDN. We implemented and
tested both approaches.

In the SDN approach, SDN capability to track flows and
flow statistics can be easily invoked to address the first two
requirements above. In contrast, if SDN is not available,
additional knowledge of the DCN architecture and routing
can enable the DCN operator to easily deploy RWNDQ. For
example if single path routing is used, the learning ability of
the switches can be invoked to implicitly assume that forward
and reverse paths are already the same. If equal-cost multi-path
routing (ECMP) is used a simple modification to the algorithm
to equally divide the flow fair share among the multiple routing
paths is easily deployed. In addition to track the number of
active TCP flows, we can simply implement efficient packet
filters to track SYN/FIN for connection establishment/tear-down
without per-flow state by using counting bloom filters.

The TCP window scaling option remains an important issue.
In practice this option is supposed to be activated to deal with
long-fat pipes to increase the receiver window from 64KB
per flow to 1GB per flow at most. However in current DCN
networks, with 1Gbps interfaces and ToR switches, the scaling
is not necessary as the round trip time is typically small (10
to 100 µs), enabling only a few packets per flow per RTT
in normal operation to fill the pipe. According to [7], the
window scaling option is supposed to be negotiated between
the sender and the receiver, and to enable it, both sender and
receiver must send the window scaling option in the SYN
and corresponding SYN/ACK. In practice however, the scaling
value is not negotiated as different implementations of TCP
adopt different default values. For example by default in MacOS
the scaling exponent is 3 while Linux calculates it according to
the allocated receiver buffer size. Furthermore, these values can
be reconfigured by the end-user to be from 0 (for no-scaling)
to 14. To avoid any cognitive mismatch between the values set
by RWNDQ in the Rwnd field and their scaled alternatives at
the sender, if scaling option is negotiated then we propose to
simply unify the value supported in the DCN by rewriting it in
the SYN and corresponding SYN/ACK at the onset of the TCP

connection via an SDN rule or directly in the switch. However,
if a TCP receiver just informs its peer of its scaling value, we
propose to have a very light shim layer at the end-hosts that
tracks per-flow scaling value, recomputes the receive window
of outgoing ACKs and reset its value using a network-wide
scaling value used by all RWNDQ-enabled switches.

In terms of processing complexity, RWNDQ is a very simple
algorithm with very low complexity and can be integrated easily
in switches or routers. For example it can be implemented in
Linux based routers as a module using the NetFilter framework
as a hook, to enable modifications to the packet headers prior to
their forwarding by IP. This requires O(1) per packet. RWNDQ
can also cope with Internet checksum recalculation easily and
efficiently after header modification, by applying a straightfor-
ward one’s-complement add and subtract operations on three 16-
bit words [8]: CSumnew = CSumold+Rwndnew−Rwndold.
In addition, since RWNDQ is designed to deal with TCP traffic
only, tracking the number of flows can be achieved in a scalable
manner by monitoring SYN/SYN-ACK and FIN/FIN-ACK bits.
This also requires O(1). Disabling or unifying the window
scaling factor also requires O(1).

All in all, all the operations required by our algorithm are
O(1) and most importantly involve only the switches/routers
under the control of the DC operator. In particular, no
modification to the TCP source or receiver algorithms is needed
to adapt the sending rate to the bottleneck link capacity.

III. CONVERGENCE OF RWNDQ MECHANISM

Since RWNDQ adopts proportional increase, proportional
decrease it is important to verify its convergence and stability.
We can simply model RWQND behaviour by considering the
three parts that make up the system: window increment/update
at the switch, source window adjustments in response to switch
feedback (assuming TCP congestion control is disabled), and
queue behaviour. Similar to [9] we adopt a fluid approach
to model how RWNDQ reacts proportionally to the extent
of congestion and updates Rwnd at predetermined constant
intervals in the switch before conveying this information in
the ACKs to the sources. This leads us to a model that is
centred around the switch where all calculations are based
on the time advances. Recall that T is the increment interval
duration, let MSS be the maximum segment size and denote
by α×B the target queue with B being the buffer size. At the
beginning of operation, W (t), the window size in the switch is
initially set to α×B bytes. By modeling the window dynamics
of RWNDQ-enabled switch into a discrete time model with
respect to T , W (t) can be written as:

W (t) =

{
W (t− T) + β(t) if t = kMT,

W (t− T) otherwise,
(1)

where, k is a positive integer and β(t) is the average value of
Qratio(t) over the different increment intervals expired during
one update interval. Simply put, β(t) is the number of MSS by
which the window should be increased/decreased in the update
interval preceding t. That is:

β(t) =

0 if t = kMT+,

MSS
M

(
1−

M∑
j=1

Q(t−jT)
αB

)
otherwise.

(2)

Notice that instead of reducing the queue dynamics in the
update interval to the final value only, our calculation of β(t)
takes into account past queue fluctuations from the start of the
interval by averaging all M values. The queue dynamics can
be described as follows :

Q(t) =

[
Q(t− T) + T

RTT
W

(
t− RTT

2

)
− CT

]+
; (3)

that is, the queue at time t receives a window-full of bytes
that was calculated half an RTT earlier (to account for the
propagation of the ACK from the router to the source and the
propagation of the data from the source to the router, arriving
at time t). For simplicity, we assume there is no congestion and
the RTT fluctuates very little, hence the ACKs do not queue
up in the reverse direction.

It is expected that the persistent queue converges to Qtarget
as t goes to infinity. To support this claim, we use the above
model and run numerical experiments in Matlab. We assume
traffic sources are connected to 1 switch with 83 packets
of buffer size and a target occupancy of 20% = 16.6 pkts.
The capacity of the output link is 10Gb/s and the RTT is
100 µs. Figure 1 shows the mean queue size over time for
two scenarios (with and without slow start) as obtained from
Matlab simulation. The figure supports our intuition that, at
the beginning the mean queue occupancy is zero until the pipe
is filled. Then it increases steadily until it converges to the
target queue as time goes to infinity. In addition, slow start
seems to improve the speed of convergence dramatically. That
is, slow start leads the queue occupancy to the target very fast,
then proportional increase proportional decrease maintains the
window around the target queue occupancy while reacting with
agility to congestion.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 2 4 6 8 10

M
ea

n
qu

eu
e

si
ze

 in
 p

kt
s

Simulation time (x104)

without slowstart
with slowstart

Figure 1: Algorithm stability and convergence speed

IV. SIMULATION ANALYSIS AND COMPARISON WITH
OTHER ALTERNATIVES

In this section, we study the performance of our algorithm
via ns2 simulation in network scenarios with a low bandwidth-
delay product (as is the case in data centers). We compare our
system to DCTCP and XCP and demonstrate how it outperforms
them. We have also compared our mechanism to TCP-RED

which we omit here as its performance was far off the 3
approaches.

For RWNDQ, the values of α, T and M are chosen based
only on the target level of congestion that can be tolerated
regardless of capacity, delay, and number of sources. In the
simulation experiments, we set α to 20% of the buffer size, T to
50 µs and M to 10 intervals leading to an update interval every
500 µs. DCTCP and XCP parameters are set according to their
recommended settings with K (the target queue occupancy) of
DCTCP set to 17% of the buffer size.

A. Simulation Setup

We use ns2 version 2.35 [10], which we have extended with
an RWNDQ module. In addition, we modified ns2 TCP module,
since the receiver window interaction between TCP sender and
receiver (Flow Control) in ns2 does not follow the standard TCP
flow control implementation. We compare TCP NewReno with
SACK-enabled over RWNDQ management to DCTCP (which
includes a modification of TCP and AQM) and XCP (which
is a complete clean-slate approach). For DCTCP, we use a
patch for ns2.35 available from the authors [11] and for proper
operation, ECN-bit capability is enabled in the switch and TCP
sender/receiver. For XCP, we use the version available in the
ns2.35 [10] distribution. We use in our simulation experiments
high speed links of 11 Gb/s for sending stations, a bottleneck
link of 10 Gb/s, low RTT of 100 µs and RTOmin of 2 ms as
opposed to the default 200 ms.

We use a dumbbell topology and run the experiments for a
period of 1 sec. The buffer size of the bottleneck link is set to
the bandwidth-delay product in all cases (83 Packets or 125
KBytes respect.), the IP data packet size is 1500 bytes.

B. Simulation Results and Discussion

First, we simulate a scenario with 5 elephant flows that start
and stop each in a predetermined order to test the convergence
and fairness. Figures 2a and 2b show the results for the goodput
of the 5 elephant flows scenario. RWNDQ is able to converge
faster to the fair-share for each active flow and on average it
achieves a better fairness with a lower variance than DCTCP.

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

G
oo

dp
ut

 (G
b/

s)

Simulation Time (s)

Flow1
Flow2
Flow3
Flow4
Flow5

(a) DCTCP

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

G
oo

dp
ut

 (G
b/

s)

Simulation Time (s)

Flow1
Flow2
Flow3
Flow4
Flow5

(b) RWNDQ

Figure 2: Goodput of 5 flows that start/stop in a predetermined order
showing the convergence speed to the fair-share

We then simulate two other scenarios with 50 and 100
sources respectively half of which are elephants and the other
half mice FTP flows to trigger incast and buffer-bloating
situations. All sources start at same time at the beginning, and

while elephants keep sending at full speed during the whole
simulation period, mice flows who finish their flow very quickly,
restart sending for another 5 epochs during the simulation. In
each of these epochs the different mice flows start in a random
order and each flow sends 10KBytes of data. The interval
between the start of two consecutive mice flows is randomly
chosen with an average equal to a packet transmission time
divided by the number of flows. This allows for the creation of
the incast problem where the start times of mice are correlated.

We study the CDF of the average and the variance of the
flow completion time (FCT) of mice flows over the incast
rounds, packet drop rate from mice flows, the persistent queue
size, the goodput of elephant flows and the link utilization in
the two scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

C
D

F

Response Time (ms)

RWNDQ
DCTCP

XCP

(a) Average FCT for 50 flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
D

F

Response Time (ms)

RWNDQ
DCTCP

XCP

(b) FCT variance for 50 flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

C
D

F

Response Time (ms)

RWNDQ
DCTCP

XCP

(c) Average FCT for 100 flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F

Response Time (ms)

RWNDQ
DCTCP

XCP

(d) FCT variance for 100 flows

Figure 3: CDF of Average FCT and variance for mice

According to Figures 3a, 3b, 3c and 3d, RWNDQ is able to
achieve a faster average FCT compared to DCTCP and XCP
and this becomes more conspicuous as the number of flows
increases. The variance in the AFCT was comparable to that
of XCP, zero for the 50 flows case and less than 10ms in the
100 flows case; in contrast, for DCTCP it reached 33ms in the
100 flows case.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Mice Packet Drop Rate (Pkt/s)

RWNDQ
DCTCP

XCP

(a) 50 flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
D

F

Mice Packet Drop Rate (Pkt/s)

RWNDQ
DCTCP

XCP

(b) 100 flows

Figure 4: CDF of the packet drop rate from mice

Figures 4a and 4b show the drop rate from mice traffic. The
figures clearly show that RWNDQ achieves comparable results
as XCP and achieves a lower drop probability than DCTCP.
Besides, as the number of flows increases, the number of drops
increases further, yet still, RWNDQ maintains a lower drop

probability compared to DCTCP and XCP. This obviously is
the reason for the lower average FCT, as retransmission delay
account for the largest portion of high FCTs in our simulations.

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.2 0.4 0.6 0.8 1

Q
ue

ue
 in

 K
B

yt
es

Simulation Time (s)

RWNDQ
DCTCP

XCP

(a) 50 flows

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.2 0.4 0.6 0.8 1
Q

ue
ue

 in
 K

B
yt

es
Simulation Time (s)

RWNDQ
DCTCP

XCP

(b) 100 flows

Figure 5: Persistent queue length over time

Figures 5a and 5b show the persistent queue length over
time. In both cases it is nearly the same for RWNDQ and
always close to the target queue. This shows the scalability
of RWNDQ as it can nearly stabilize the queue length at the
target level even when the traffic volume is high. In contrast
for DCTCP, the persistent queue in the 100 flows case is more
than double its value in the 50 flows case. However, for XCP,
with a larger number of competing flows, the queue occupancy
decreases as the feedback values are divided among larger
estimated number of flows causing a fractional increase in
congestion window, which eventually get floored at the source
to the nearest integer losing the feedback increments.

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

G
oo

dp
ut

 (G
b/

s)

Simulation Time (s)

RWNDQ
DCTCP

XCP

(a) 50 flows

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

G
oo

dp
ut

 (G
b/

s)

Simulation Time (s)

RWNDQ
DCTCP

XCP

(b) 100 flows

Figure 6: Bottleneck link utilization over time

Figures 6a and 6b show the bottleneck link utilization
and reveal that DCTCP and XCP can achieve nearly full
utilization all the time with little decrease during incast, while
RWNDQ has a slightly higher decrease in the utilization at the
beginning of incast period. This is due to RWNDQ reacting
fast and conservatively to the sudden surge of excess traffic.
Nevertheless, as shown in Figures 7a and 7b the average
goodput of elephants in RWNDQ is comparable to both
DCTCP and XCP with significantly improved fairness among
competing elephants. This fairness can be attributed to the faster
convergence time of RWNDQ and the accurate estimation of
congestion level at the switch.

To summarize this simulation study, RWNDQ seems to be
able to smooth oscillations and reach a high link utilization,
small queue size, and fair rate allocation among competing
flows. Besides, the protocol showed a high degree of robustness
in face of varying and sudden traffic surges.

 0

 0.2

 0.4

 0.6

 0.8

 1

 385 390 395 400 405 410

C
D

F

Goodput (Mb/s)

RWNDQ
DCTCP

XCP

(a) 50 flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 160 170 180 190 200 210

C
D

F

Goodput (Mb/s)

RWNDQ
DCTCP

XCP

(b) 100 flows

Figure 7: CDF of the average goodput of elephants

V. CONCLUSION AND FUTURE WORK

In this paper, we set to reconcile between the conflicting
requirements of elephant and mice flows that are known to make
up the lion’s share of DCNs traffic. We found that the persistent
queue size must be maintained low enough to enable the system
to absorb bursts of incast traffic, achieving a faster average
flow completion time for mice flows, and sustaining a high
throughput for elephants. We proposed the RWNDQ mechanism
as a switch-driven flow-aware rate matching algorithm that
only relies on the existing flow-control mechanism of TCP to
feedback queue occupancy levels to TCP senders. A number of
detailed simulations showed that RWNDQ can achieve its goals
efficiently while outperforming the most prominent alternative
approaches. Last but not least, knowing that in most public data
centers the TCP sender and/or receiver are outside the control
of the DCN operator, RWNDQ has as a design requirement
to avoid modifying the TCP congestion control algorithm to
enable true deployment potential in real public DC networks.

REFERENCES

[1] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph,
“Understanding TCP incast throughput collapse in datacenter
networks,” in Proceedings of the 1st ACM workshop on Research
on enterprise networking - WREN ’09, pp. 73–82, 2009.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP
(DCTCP),” ACM SIGCOMM Computer Communication Review,
vol. 40, p. 63, 2010.

[3] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast
congestion control for TCP in data-center networks,” IEEE/ACM
Transactions on Networking, vol. 21, pp. 345–358, 2013.

[4] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe
and effective fine-grained TCP retransmissions for datacenter
communication,” ACM SIGCOMM Computer Communication
Review, vol. 39, p. 303, 2009.

[5] P. Cheng, F. Ren, R. Shu, and C. Lin, “Catch the Whole Lot in an
Action: Rapid Precise Packet Loss Notification in Data Center,”
in Proceedings of the 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), pp. 17–28, 2014.

[6] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control
for High Bandwidh-Delay Product Networks,” in Proc. ACM
Conference on Communications Architectures, Protocols and
Applications (SIGCOMM’02), 2002.

[7] IETF.org, “TCP Extensions for High Performance.”
http://tools.ietf.org/html/rfc1323.

[8] J. Postel, “RFC 793 - Transmission Control Protocol,” 1981.
http://www.ietf.org/rfc/rfc793.txt.

[9] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based analysis
of a network of AQM routers supporting TCP flows with an

application to RED,” ACM SIGCOMM Computer Communication
Review, vol. 30, pp. 151–160, 2000.

[10] NS2, “The network simulator ns-2 project.”
http://www.isi.edu/nsnam/ns.

[11] M. Alizadeh, “Data Center TCP (DCTCP),” 2012.
http://simula.stanford.edu/%7Ealizade/Site/DCTCP.html.

