
Incast-Aware Switch-Assisted TCP Congestion
Control for Data Centers

Ahmed M. Abdelmoniem and Brahim Bensaou
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
{amas, brahim}@cse.ust.hk

Abstract—Due to the partition/aggregate nature of many
cloud applications, incast traffic is preponderant in data center
networks (DCNs). Because TCP is agnostic to this composite
nature of the applications traffic and their quality of service
requirements, a few congestion events often degrade significantly
the user perceived quality of service. This is exacerbated by the
co-existence of such incast traffic with other elastic traffic flows in
the network. In this paper we address the congestion problems of
incast traffic and its interaction with other elastic traffic in DCNs.
We propose a switch-assisted TCP congestion control via some
small modifications to the switch software that do not require
any modification to the TCP protocol nor to the TCP sender or
receiver logic. We assess the performance of the proposed scheme
via ns2 simulation as well as a real deployment in a small-scale
testbed1.

Keywords—Congestion Control, Data Center Networks, Incast,
TCP.

I. INTRODUCTION

Data center networks (DCNs) carry the traffic of a plethora
of applications with various traffic characteristics and per-
formance requirements, ranging from a multitude of barrier-
synchronized, short-lived, time-sensitive flows (called in the
sequel ants) to long-lived, time-insensitive, bandwidth-inclined
flows such as backups and virtual machine migration (re-
ferred in the remainder as elephants). Recent measurements
[1, 2] have shown that in practice DCNs abound with ant
type of applications that lead to incast traffic. They can be
encountered in i) data-intensive processing systems such as
MapReduce [3] used by web-search, e-commerce, and social
networks applications. Such systems handle huge amounts of
data by concurrently processing them across many servers.
Hence, many-to-many or many-to-one data transfers take place
between processing nodes; ii) distributed file systems where
large amount of data are stored in many distributed storage
nodes, such as BigTable. When a client retrieves data, parallel
access to some of these distributed nodes is needed; and, iii)
large-scale web applications where every requested service
is broken into parallel tasks assigned to worker nodes. The
responses from these workers are collected by an aggregation
node that finally produces the final result. .

DCNs are structured to provide a high bandwidth and low
latency networking environment. To this end, and for cost

1Manuscript is published in proceedings of IEEE GlobeCom15 c⃝ 2015
IEEE. This work is supported in part under Grants: HKPFS PF12-16707,
REC14EG03 and FSGRF13EG14

considerations, Ethernet switches with small buffers (instead
of routers with large buffers) are used for interconnecting the
servers. In the presence of such small buffers, the sudden surge
of synchronized incast traffic often results in congestion events
which are exacerbated by the presence of elephant traffic in
the same buffer. Such complex congestion events are shown
in recent works [2, 4] to be inadequately handled by TCP,
as it is agnostic to the quality of service requirements of ant
traffic flows as well as the composite nature of the application
data. Yet most applications in DCN still rely on TCP for data
transport.

To address such congestion problems in DCNs, recent work
has mainly been devoted to modifying TCP to overcome its
shortcomings: [5] observed that there was a mismatch between
TCP timeout timers in the hosts and the actual round-trip
times (RTTs) experienced in DCNs. Typically, when incoming
data overflows the small switch buffers, TCP timeouts that
last hundreds of milliseconds occur. Due to the design of
TCP timeout in most operating systems a latency-sensitive
applications that suffers a timeout would have to wait for
several hundred RTTs before it can retransmit its data2. The
proposed solution in [5] consists simply in modifying TCP
stack by using high-resolution timers to enable microsecond-
granularity in TCP timeouts. This technique was shown to
effectively avoid TCP incast collapse. The so-called DCTCP
[4] adopts TCP-AQM as a means to controlling congestion
problems in DCNs. DCTCP modifies TCP congestion window
adjustment function to maintain a high bandwidth utilization
and sets RED’s parameters to a small threshold to achieve
a small queue length (and thus a short queueing delay). It
is shown in [4] that DCTCP can achieve small delays for
ants traffic without degrading the link utilization. Nevertheless,
DCTCP requires the modification of both TCP sender and TCP
receiver algorithms.

ICTCP [2] also proposed a modification to TCP receiver to
handle incast traffic. ICTCP adjusts the TCP receiver window
proactively, before packets are dropped. The experiments with
ICTCP in a real testbed show that ICTCP can almost curb
timeouts and achieves a high throughput for TCP incast traffic.
Unfortunately, ICTCP does not address the impact of buffer
build up issue caused by the co-existence of elephants in the
same buffer as the ants. Furthermore, it is effective only if the
incast congestion happens at the destination node and finally it

2For example the Linux implementation sets the minimum timeout to 200
millisecond whereas the RTT in a data center ranges typically from a few tens
to a few hundred microseconds

also requires changes to the TCP receiver algorithm. Overall,
the good results achieved by these prior works are compelling
evidence that there is a need for a better way to handle
congestion events in DC networks. However, we argue that
modifying the TCP protocol and/or the TCP sender or receiver
logic is only applicable to small scale private data centers:
in most today’s public clouds, tenants can upload their own
operating system images to their virtual machines. In addition
in many instances of applications, the TCP sender and/or
receiver are/is outside the cloud and under the total control
of the tenant. Our target in this paper is to build a solution
to the incast problem that has the following requirements:
(R1) it should handle effectively the problem of incast traffic
congestion by improving the incast flow completion time;
(R2) it should not dramatically degrade the throughput of
elephant flows; (R3) it should not require modification to the
TCP sender, nor to the receiver. Any required modification
must be in devices that are fully under the control of the DCN
operator; (R4) and finally it must be simple enough to be prone
to deployment in a real system.

With this objective in mind, we adopt a switch-based
approach where the switch actively monitors the occurrence of
incast traffic and proactively intervenes, whenever congestion
events are forecast, in order to enable ant traffic to pass with
minimal congestion. To avoid modifying the existing source
and receiver algorithms, our switch uses the TCP flow control
window field in the packet headers in a cross-layer approach
to temporarily quench the sending rates of elephants without
reducing their congestion window sizes, enabling them to
recover their sending rates immediately after the incast traffic
has avoided congestion.

In the remainder of this paper, we will first discuss our
proposed methodology in Section II then present our switch
queue management algorithm and discuss it in Section III. We
will first evaluate our algorithm via ns2 simulation in Section
IV to compare it to alternative approaches, then in Section V
we discuss our implementation and evaluation in a small-scale
testbed. We finally conclude the paper in VI.

II. BACKGROUND AND PROPOSED METHODOLOGY

A very high level explanation of the rationale of our
proposed incast queue management (IQM) algorithm is illus-
trated in Fig. 1. Considering the persistent queue length in
a switch buffer during a measurement period of length Ti to
be Q(Ti), if during the period of time a volley of N new
TCP connections are established (i.e., N TCP SYN packets are
seen), it is expected that in the next period Ti+1, the queue
length Q(Ti+1) is not more than Q(Ti)+N ∗x∗MSS bytes,
where x is the initial window size of TCP in segments. Since
incast traffic is ephemeral, the persistent queue is mainly due to
elephant flows (or a complex pattern of incast flows arrivals),
as a result, IQM measures the number of new flows N by the
end of each time interval Ti, and if it predicts the queue length
Q(Ti+1) to reach a congestion threshold in the next interval
Ti+1 then it throttles all the ongoing flows to a sending rate
of 1 MSS per RTT each in the next intervals, achieving thus
short term fairness between all flows (ants and elephants) and
meeting requirement (R1).

In principle, since the TCP source rate is determined by the
sending window [6] Swnd which is the minimum of receiver

Volley of
N SYN Q(Ti)

Volley of
N*x MSS

Q(Ti+1) < Q(Ti)+
N*x MSS

Ti

Ti+1

Figure 1: IQM Rationale: Assuming the queue stable at RTT i, if
a volley of N SYN packets is measured in RTT i, it is
expected in the worst case that in the next RTT N ∗x new
segments of size MSS will be added to the queue

window Rwnd , and the congestion Cwnd , and since Cwnd is
normally at least equal to 1 MSS, to meet requirement (R3),
the switch can rewrite the receiver window field in the TCP
ACK headers as a means to throttling the sender rate to 1
MSS per RTT. However this requires the TCP ACKs to travel
along the reverse path of the TCP data segments. This can be
achieved by invoking software defined networking (SDN) and
Openflow as they provide the ability to implement flow-aware
forwarding to set the forward and reverse flow along the same
path. SDN also provides statistics on the ongoing number of
flows and the queue occupancy for each switch port.

Throttling all flows sending rates to a single segment per
RTT will have the immediate effect of dropping the queue
length dramatically below the congestion threshold (if the
persistent queue was due to a few elephants), as a result, since
incast traffic is ephemeral, to meet requirement (R2), Rwnd
rewriting would stop after only a few time intervals as soon
as the ants finish their transmission, which enables ongoing
elephants to recover their previous sending rate (since Rwnd
is still the same). To meet requirement (R4), instead of tracking
individual flow states to estimate accurately the queue length
in the next interval, the switch can use rough estimates by
simply counting the number N of segments with a SYN bit
set less the number of segments with the FIN bit set; this in the
worst case results in a conservative estimate of the expected
queue length. Without loss of generality, in the sequel we will
consider the value of x to be 1 MSS.

SDN
Controller

Intercept
SYN/FIN

ToR
switches

Set
Forwarding

rules

Data Center

Ingress/
Egress
Router

Figure 2: SDN based implementation scenario of flow-aware net-
work

Figure 2 illustrates a possible implementation scenario of
our proposed mechanism. All switches in the DC are SDN-
enabled, the controller controls all the switches in the DC

and sets rules in the ingress/egress router as well as all top
of rack (ToR) switches to intercept any TCP SYN segments.
As a result, the controller is able to track TCP connections
and to pin-down forward and reverse paths by setting new
forwarding rules (or merging them in existing aggregates) in
the DCN switches. By also intercepting the FIN segments
in the ingress/egress router and ToR switches, the controller
is also able to withdraw routing rules from the switches
as necessary. Each of the DC switches must run our IQM
algorithm to update the receiver window field in the ACK
headers as they cross the switch on the reverse path.

III. INCAST-AWARE QUEUE MANAGEMENT ALGORITHM

The main variables and parameters used in the IQM
algorithm are described in Table I. Notice that Ti and α are
parameters of the algorithm that can be chosen by the DC
administrator. As a rule of thumb, Ti should be larger than 1
RTT.

Table I: Variables and Parameters used in Algorithm 1

Parameter name Description
Ti Timeout value for Incast monitoring interval
α No-Incast queue length threshold

Variable name Description
β Coarsely estimated differential of new connections

Qlen Current length of the output queue
Qlimit buffer size on the forward path

P a packet
Rwnd(P) Receiver window field in packet P

A. IQM algorithm

Algorithm 1 IQM Algorithm (as an event handler)
1: switch (EV ENT)
2: case Packet Arrival(P):
3: if Max Size < Size(P) then
4: Max Size← Size(P)
5: end if
6: if SYN bit set(P) then
7: β ← β + 1
8: end if
9: if FIN bit set(P) then

10: β ←MAX(0, β − 1)
11: end if
12: if ACK bit set(P) and Incast flag then
13: Rwnd(P)←Max Size
14: end if
15: case Incast Detection T imeout:
16: if Qlen < α×Qlimit then
17: Incast flag ← false
18: end if
19: Extra traffic← β × Initial CWND +Qlen

20: if Extra traffic > Qlimit then
21: Incast flag ← true
22: end if
23: β ← 0; Restart Incast detection timer Ti

24: end switch

IQM algorithm shown in Algorithm 1 is an event-driven
mechanism which extends the simple drop-tail queue manage-
ment with two major event handlers: packet arrivals and incast
detection timer expiry to trigger window updates.

1) Upon a packet arrival: the maximum segment size seen
so far is updated. If this is a SYN packet for establishing
a new TCP connection, then the current value of β is
incremented, and if this is a FIN packet for closing an
established TCP connection, then β is decremented. If
the ACK bit is set, the receive window of the Packet
is overwritten with 1 MSS worth of bytes whenever the
incast flag is set.

2) Upon elapse of the incast detection timer:
Extra traffic indicates the minimal number of
extra bytes that will be introduced into the network
by the β new and existing connections. Typically each
of the sampled new connections starts by sending a
full initial congestion window worth of bytes into the
network while existing ones will maintain the same
persistent queue. If the buffer is expected to overflow in
the next interval, then we need to take a fast proactive
action to make room for the forthcoming incast traffic,
by setting the receive window of passing ACKs in the
backward-path to a conservative value of 1 MSS. This
will ensure to some extent that the short query traffic
(1-10KB) flows will not experience packet drops and
hence will not incur the waiting time for retransmission
timeout. The incast flag is cleared as soon as the queue
length drops below the predetermined threshold enabling
thus elephant flows to re-use their previous congestion
window values.

Notice that in our algorithm the incast flag tracks imminent
congestion rather than incast events per se. But as a by-product
it handles incast traffic surges quite well. Indeed, the incast
flag can be set because a volley of incast packets is about to
arrive and is deemed to lead the buffer to overflow, or the
buffer was almost full and a few new arriving (not necessarily
incast) flows would lead the buffer to overflow. In both cases
our algorithm throttles all ongoing flows to 1 MSS to drain
the queue.

B. Practical aspects of IQM Algorithm

IQM maintains a very low loss rate during incast events and
enables the switch buffers to absorb sudden traffic surges while
maintaining a high utilization. Therefore it is appealing for
handling the co-existence of ants and elephants. IQM adopts
a proactive recovery actions in face of the forecast incast
information. As soon as the incoming traffic gives indication of
overflowing the buffer, the receive window is shrunk drastically
to 1 MSS. Furthermore the new window is equally applied to
all ongoing flows meaning that all flows (ants or elephants)
will receive an equal treatment during incast periods. As
soon as, the incast traffic, which is short-lived, finishes and
leaves the network indicated by the queue occupancy dropping
back to less than the predetermined threshold, the elephants
immediately restore their previous sending rates by disabling
receive window setting to 1 MSS. This typically means during
their short existence, incast flows will compete fairly with
the elephants and afterwards the elephants can regain their
previous steady-state sending rates.

Notice that IQM is a very simple algorithm with very low
complexity and can be integrated easily in switches or routers.
For example it can be implemented in Linux based routers
as a hook in the net-filter framework, to enable modifications

to the packet headers prior to their forwarding by IP. This
requires O(1) per packet. IQM can also cope with Internet
checksum recalculation very easily and efficiently after header
modification, by applying the following straightforward one’s-
complement add and subtract operations on three 16-bit words:
Checksumnew = Checksumold +Rwndnew −Rwndold [7].
This also takes O(1) per modified packet. In addition, since
IQM is designed to deal with TCP traffic only, monitoring
SYN/SYN-ACK and FIN/FIN-ACK bits are simple per-switch-
port counters and do not require per-flow information tracking,
thus it also requires O(1). As suggested earlier this can also
be done by the SDN controller via a set of rules in the
ingress/egress and ToR switches or by the switches themselves.
Last but not least, in an SDN based DC, the forward and
backward routes can be pinned down along the same path by
the SDN controller.

All the operations required by our algorithm take O(1) pro-
cessing time and most importantly involve only the switches
and routers under the control of the DC operator. In particular,
no modification to the TCP source or receiver is needed.

Our mechanism may raise concerns related to the possi-
bility of being vulnerable to SYN flooding attacks [8]. In our
case, the attack would exploit how we set the receive window
to 1 MSS whenever a flood of half-open SYN are counted. This
behaviour will lead the sender’s window to fluctuate each RTT
between the current Cwnd and 1 MSS. This well-known attack
can affect the operation of TCP, DCTCP and ICTCP as well,
because it is targeted towards TCP applications in general and
many proposals have suggested possible solutions to mitigate
this attack [8].

IV. SIMULATION AND PERFORMANCE ANALYSIS

In this section, we study the performance of our algorithm
via simulation in network scenarios with a low delay high
bandwidth (as is the case in data centers). We compare our
system to TCP-DropTail, TCP-RED and DCTCP and demon-
strate how it outperforms both TCP with Droptail or RED and
achieves similar performance as DCTCP without modification
to the source and receiver. For IQM, the values of α are chosen
based only on the level of queue occupancy that signals end
of incast, Ti is set to be equal to the average round trip time in
the network. In the simulation experiments, we set α to 20%
of the buffer size, Ti to 500 µs. DCTCP parameters are set
according to the recommended settings by the authors with K
(the target queue occupancy) set to 17% of the buffer size.

A. Simulation Setup

We used ns2 version 2.35 [9], which we have extended
with an IQM module as an inherited class of the DropTail
queue management. In addition, we modified ns2 TCP module,
since the receiver window interaction between TCP sender and
receiver (Flow Control) in ns2 does not follow the standard
TCP flow control implementation. We compare TCP NewReno
with SACK-enabled over Droptail, RED and IQM queue
management to DCTCP (which includes a modification of
TCP and AQM). For DCTCP, we use a patch for ns2.35
available from the authors [10] and for proper operation, ECN-
bit capability is enabled in the switch and TCP sender/receiver.
We use in our simulation experiments high speed links of 1

Gb/s for sending stations, a bottleneck link of 1 Gb/s, average
RTT of 500 µs and MinRTO of 2 ms, as opposed to the default
200 ms, which is close to 4 times the average round trip time.

We use a dumbbell topology and run the experiments for a
period of 1 sec. The buffer size of the bottleneck link is set in
all cases to 83 packets or 125 KBytes where the IP data packet
size is 1500 bytes. We simulate two scenarios to cause incast
and buffer-bloating situations where the number of sources are
50 and 100 FTP flows respectively. In each scenario, half the
sources are elephants and the other half are ants. All sources
start at same time at the beginning and while elephants keep
sending at full link-rate during the whole simulation period,
ants who finish their flow very quickly restart sending for
another 5 epochs during the simulation. To ensure a relatively
tight synchronization between ant flows, and create an incast
traffic scenario, in each of these 5 epochs, the individual ants
start in a random order within one packet transmission time.
Each ant sends 10KBytes of data and goes to sleep until the
next epoch.

B. Simulation Results and Discussion

Fig. 3 and Fig. 4 show the distributions of the mean and
variance of the flow completion time (AFCT) for ants, the
total number of packet drops from ant flows and the goodput
of elephant flows for the two scenarios respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Response Time (ms)

TCP-DropTail
TCP-RED
TCP-IQM

DCTCP

(a) Average FCT for ants

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F
Response Time (ms)

TCP-DropTail
TCP-RED
TCP-IQM

DCTCP

(b) Variance of AFCT for ants

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

No. of Packets

TCP-DropTail
TCP-RED
TCP-IQM

DCTCP

(c) Total drops for ants

 0

 0.2

 0.4

 0.6

 0.8

 1

 35 40 45 50

C
D

F

Goodput (Mb/s)

TCP-DropTail
TCP-RED
TCP-IQM

DCTCP

(d) Average elephants goodput

Figure 3: Performance metrics of TCP (DropTail, RED and IQM)
and DCTCP with 50 traffic sources

According to Fig. 3a, Fig. 3b, Fig. 4a and Fig. 4b, TCP-
IQM is able to achieve a shorter AFCT compared to TCP
(DropTail, RED) and very close to what DCTCP achieves in
the 50 sources case. By increasing the traffic load to 100
sources, TCP-IQM’s FCT improves much better than even
DCTCP. This is because with 100 TCP sources, the bandwidth-
delay product plus the buffer size result in an optimal window
of 1 MSS, in this case IQM will not exit from incast state as the
queue occupancy is always higher than 20% of the buffer size.
Fig. 3c and Fig. 4c show the drop rate from incast traffic with

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

Response Time (ms)

TCP-DropTail
TCP-RED
TCP-IQM

DCTCP

(a) Average FCT for ants

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
D

F

Response Time (ms)

TCP-DropTail
TCP-RED
TCP-IQM

DCTCP

(b) Variance of AFCT of ants

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

No. of Packets

TCP-DropTail
TCP-RED
TCP-IQM

DCTCP

(c) Total drops from ants

 0

 0.2

 0.4

 0.6

 0.8

 1

 14 16 18 20 22 24 26

C
D

F

Goodput (Mb/s)

TCP-DropTail
TCP-RED
TCP-IQM

DCTCP

(d) Average elephants goodput

Figure 4: Performance metrics of TCP (DropTail, RED and IQM)
and DCTCP with 100 traffic sources

TCP-IQM to be much lower than TCP-(DropTail, RED) and
DCTCP in the 100 scenario. TCP-IQM can shield ant traffic
from unnecessary drops, which explains the smaller AFCT.

Fig. 3d and 4d show that the average goodput of elephants
in TCP-IQM is comparable to TCP-(DropTail, RED) and
DCTCP, which indicates that there is no effect on the long-
term throughput of these flows.

V. TESTBED IMPLEMENTATION OF IQM IN
OPENVSWITCH

We further investigate the implementation of IQM as
a queue management mechanism based on simple FIFO-
DropTail in OpenvSwitch [11] for experimentation in a real-
testbed. We patched the Kernel datapath modules of Open-
VSwitch with the same functions described earlier in the IQM
algorithm. We added IQM functions in the processing pipeline
of the packets that pass through the kernel datapath module
of OpenVSwitch. In a virtualized environment, IQM-enabled
OpenvSwitch can process the traffic for inter-VM, Intra-Host
and Inter-Host communications. This is an efficient way of
deploying IQM on the host operating system of the switch by
only applying a patch and recompiling OpenvSwitch module,
making it easily deployable in today’s production DCs.

A. Testbed Setup

For experimenting with our patched OpenvSwitch, we set
up a testbed as shown in Fig. 5. All machines’ internal ports
are connected to the patched OpenvSwitch machine shown as
switch. We have 5 CentOS machines as destinations and 5
Ubuntu machines as sources all are connected to a different
1 Gb/s D-Link dumb-switch. Similarly, the machines are
running the patched OpenVswitch and an Apache web server
hosting an ”index.html” webpage of size 11.5KB. We setup
different scenarios to reproduce both incast and buffer-bloating

Switch

SendersRecievers Master

Bottleneck

Figure 5: Testbed scenario for IQM-enabled OpenvSwitch

situations with multiple-bottleneck links in the network as
shown in Fig. 5. The bottlenecks at the senders are created
by creating multiple ports on the OpenvSwitch and binding an
iperf flow or an Apache server process to each one of them.

B. Experimental Results

The goals of the experiments are to: i) show that with the
support of IQM, TCP can support many more connections and
maintain high link utilization; ii) show that with the support
of IQM, TCP can overcome incast congestion situations in the
network; iii) measure IQM’s impact on the FCT of ant flows
in incast combined with buffer-bloating situations where ants
compete with elephants.

We run an incast with buffer-bloating scenario in which
ant traffic competes with elephant flows to see if IQM can
help ant flow’s AFCT during incast period. We first generate
10 synchronized iperf [12] elephant connections continuously
sending for 30 secs from each sender resulting in 50 ele-
phants at link 6. We use Apache benchmark [13] to request
”index.html” webpage (representing ant flows) from each
of the web servers (6 × 5 = 30 in total) running on the
same machines where elephants are sending. Note that, we
run Apache benchmark, at the 0thsec, requesting the webpage
1000 times then it reports different statistics over the 1000
requests. Fig. 6 shows that, in medium load, IQM achieves
a good balance in meeting the conflicting requirements of
elephants and ants. The competing ant flows benefit under IQM
by achieving a smaller FCT on average with a smaller standard
deviation compared to TCP with DropTail as shown in Fig. 6a
and Fig. 6b. In addition, as IQM efficiently detects the incast
and proactively throttles the elephants, it can decrease the drop
rate during incast events, in Fig. 6c, the long-lived elephants
are shown to not be affected by IQM’s interruption of their
sending rate for a very short period. In Fig. 6d, the drops under
TCP-IQM is lower than DropTail, which helps ants avoid long
timeouts of at least 200ms.

We repeat the experiment, increasing the load to 150 long-
lived elephants then introduce the 30 ants. As shown in Fig. 7,
IQM is able to satisfy the requirements of latency-sensitive ants
eventhough they are outnumbered by elephants. Fig. 7a and
Fig. 7b show that ant flows are not blocked by the bandwidth-
hogging elephants. The mean FCT and FCT variance under
IQM are much smaller than those achieved with DropTail.
In addition, Fig. 7c show that, the elephants do not suffer
too much from the proactive fairness introduced by IQM
during incast periods. From Fig. 7d it is evident that TCP

 0

 0.2

 0.4

 0.6

 0.8

 1

 9 10 11 12 13 14 15 16

C
D

F

Mean FCT (ms)

cubic-IQM
reno-IQM

cubic-DropTail
reno-DropTail

(a) Average FCT for ants

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45

C
D

F

FCT Standard Deviation (ms)

cubic-IQM
reno-IQM

cubic-DropTail
reno-DropTail

(b) SD of FCT for ants

 0

 0.2

 0.4

 0.6

 0.8

 1

 14 15 16 17 18 19

C
D

F

Goodput (Mb/s)

cubic-IQM
reno-IQM

cubic-DropTail
reno-DropTail

(c) Average elephant throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

C
D

F

Drops (pkts x 10
3
)

cubic-IQM
reno-IQM

cubic-DropTail
reno-DropTail

(d) Total link packet drops

Figure 6: Ants FCT for IQM vs. DropTail: 50 elephants competing
with 30 ants

with DropTail is experiencing timeouts due to excessive packet
drops which to some extent are avoided under IQM.

 0

 0.2

 0.4

 0.6

 0.8

 1

 12 14 16 18 20 22

C
D

F

Mean FCT (ms)

cubic-IQM
reno-IQM

cubic-DropTail
reno-DropTail

(a) Average ant FCT

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90

C
D

F

FCT Standard Deviation (ms)

cubic-IQM

reno-IQM

cubic-DropTail

reno-DropTail

(b) SD of ant FCT

 0

 0.2

 0.4

 0.6

 0.8

 1

 4.5 5 5.5 6 6.5 7

C
D

F

Goodput (Mb/s)

cubic-IQM
reno-IQM

cubic-DropTail
reno-DropTail

(c) Average elephant throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16

C
D

F

Drops (pkts x 10
3
)

cubic-IQM
reno-IQM

cubic-DropTail
reno-DropTail

(d) Total link packet drops

Figure 7: Ants FCT for IQM vs. DropTail: 150 elephants competing
with 30 ants

In summary the experimental results reinforce the results
obtained in the simulation. In particular, they show that:

• IQM helps in reducing ant traffic latency and maintains

a high throughput for elephants.
• IQM gracefully handles incast events, in low and high

load scenarios, while nearly saturating the link.
• IQM achieved all this without any modification to the

TCP algorithms at the source nor the receiver and seems
to scale well in our testbed.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a switch-assisted congestion
control mechanism to support the short-lived incast flows,
that are known to constitute the majority of flows in data
centers. Our mechanism was shown via simulation and testbed
experiments to achieve small flow completion times for incast
traffic without impairing the throughput of elephant flows. Our
IQM mechanism is also shown to be simple, practical and
also it meets all its design requirements. A number of detailed
simulations showed that IQM can achieve its goals efficiently
while outperforming the most prominent alternative approach.
Last but not least, knowing that in most public data centers the
TCP sender and/or receiver are outside the DC network, IQM
makes a point of principle to not modify the TCP algorithms
to enable true deployment potential in real networks.

REFERENCES

[1] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic,” in Proceedings of the 9th
ACM SIGCOMM conference on Internet measurement confer-
ence - IMC ’09. New York, New York, USA: ACM Press,
Nov. 2009, p. 202.

[2] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast
congestion control for TCP in data-center networks,” IEEE/ACM
Transactions on Networking, vol. 21, pp. 345–358, 2013.

[3] J. Dean and S. Ghemawat, “MapReduce : Simplified Data
Processing on Large Clusters,” Communications of the ACM,
vol. 51, pp. 1–13, 2008.

[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP
(DCTCP),” ACM SIGCOMM Computer Communication Review,
vol. 40, p. 63, 2010.

[5] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe
and effective fine-grained TCP retransmissions for datacenter
communication,” ACM SIGCOMM Computer Communication
Review, vol. 39, p. 303, 2009.

[6] M. Handley, J. Padhye, and S. Floyd. (2000)
RFC 2861 - TCP Congestion Window Validation.
Https://tools.ietf.org/html/rfc2861.

[7] A. Rijsinghani. (1994) RFC 1624 - Computation
of the Internet Checksum via Incremental Update.
Https://tools.ietf.org/html/rfc1624.

[8] W. Eddy. (2007) RFC 4987 - TCP SYN Flooding Attacks and
Common Mitigations. Https://tools.ietf.org/html/rfc4987.

[9] NS2. The network simulator ns-2 project.
Http://www.isi.edu/nsnam/ns.

[10] M. Alizadeh. Data Center TCP (DCTCP).
http://simula.stanford.edu/ alizade/Site/DCTCP.html.

[11] OpenvSwitch.org. Open Virtual Switch project.
Http://openvswitch.org/.

[12] iperf. The TCP/UDP Bandwidth Measurement Tool.
Https://iperf.fr/.

[13] Apache.org. Apache HTTP server benchmarking tool.
Http://httpd.apache.org/docs/2.2/programs/ab.html.

